Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms
Abstract
:1. Introduction
2. Materials
2.1. Study Area and VAIA Windstorm
2.2. Sentinel-2 Time Series Preprocessing
2.3. Training Dataset
2.4. Validation Dataset
3. Methods
3.1. Mapping Vaia Damages
3.1.1. Breaks for Additive Seasonal and Trend Iterative Algorithm
3.1.2. Continuous Change Detection and Classification Algorithm
3.2. Accuracy Assesment of Forest Windstorm Damage Maps
3.3. Probability-Based Stratified Estimators
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Climate Change Guidelines for Forest Managers; FAO Forestry, Paper No. 172. Rome, Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2013. [Google Scholar]
- Cheng, C.S.; Lopes, E.; Fu, C.; Huang, Z. Possible impacts of climate change on wind gusts under downscaled future climate conditions: Updated for Canada. J. Clim. 2014, 27, 1255–1270. [Google Scholar] [CrossRef]
- Pinto, J.G.; Neuhaus, C.P.; Leckebusch, G.C.; Reyers, M.; Kerschgens, M. Estimation of Wind Storm Impacts over Western Germany under Future Climate Conditions Using a Statistical–Dynamical Downscaling Approach. Tellus A 2010, 62, 188–201. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomaštík, J.; Small, D.; et al. A spatially explicit database of wind disturbances in European forests over the period 2000—2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Pardowitz, T.; Befort, D.J.; Leckebusch, G.C.; Ulbrich, U. Estimating uncertainties from high resolution simulations of extreme wind storms and consequences for impacts. Meteorol. Z. 2016, 25, 531–541. [Google Scholar] [CrossRef]
- Gardiner, B.; Schuck, A.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B. What Science Can Tell Us. In Living with Storm Damage to Forests; Gardiner, B., Schuck, A., Schelhaas, M.J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; ISBN 978-952-5980-09-7. [Google Scholar]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Chirici, G.; Bottalico, F.; Giannetti, F.; Del Perugia, B.; Travaglini, D.; Nocentini, S.; Kutchartt, E.; Marchi, E.; Foderi, C.; Fioravanti, M.; et al. Assessing forest windthrow damage using single-date, post-event airborne laser scanning data. Int. J. For. Res. 2018, 1, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Luo, Y.; Zhao, Z.; Tao, S. Changes in wind speed over China during 1956–2004. Theor. Appl. Climatol. 2009, 99, 421. [Google Scholar] [CrossRef]
- Najac, J.; Lac, C.; Terray, L. Impact of climate change on surface winds in France using a statistical-dynamical downscaling method with mesoscale modelling. Int. J. Climatol. 2011, 31, 415–430. [Google Scholar] [CrossRef]
- IPCC. Fundamental and Applied Climatology. In Proceedings of the 2019 Refinement To the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Kyoto, Japan, 12 May 2019; 2, pp. 5–13. [Google Scholar] [CrossRef]
- Pilli, R.; Vizzarri, M.; Chirici, G. Combined effects of natural disturbances and management on forest carbon sequestration: The case of Vaia storm in Italy. Ann. For. Sci. 2021, 78, 46. [Google Scholar] [CrossRef]
- Rüetschi, M.; Small, D.; Waser, L.T. Rapid detection of windthrows using Sentinel-1 C-band SAR data. Remote Sens. 2019, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Honkavaara, E.; Litkey, P.; Nurminen, K. Automatic storm damage detection in forests using high-altitude photogrammetric imagery. Remote Sens. 2013, 5, 1405–1424. [Google Scholar] [CrossRef] [Green Version]
- Dalponte, M.; Marzini, S.; Solano-Correa, Y.T.; Tonon, G.; Vescovo, L.; Gianelle, D. Mapping forest windthrows using high spatial resolution multispectral satellite images. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102206. [Google Scholar] [CrossRef]
- FAO. Forests and agriculture: Land-use challenges and opportunities. In State of the World’s Forests 2016; FAO: Rome, Italy, 2016; Volume 45, pp. 1545–2050. ISBN 1543-5938. [Google Scholar]
- FOREST EUROPE, 2020: State of Europe’s Forests 2020; Ministerial Conference on the Protection of Forests in Europe—FOREST EUROPE Liaison Unit Bratislava: Bratislava, Slovakia, 2020.
- Vaglio Laurin, G.; Francini, S.; Luti, T.; Chirici, G.; Pirotti, F.; Papale, D. Satellite open data to monitor forest damage caused by extreme climate-induced events: A case study of the Vaia storm in Northern Italy. Int. J. For. Res. 2020, 1–10. [Google Scholar] [CrossRef]
- Kislov, D.E.; Korznikov, K.A. Automatic windthrow detection using very-high-resolution satellite imagery and deep learning. Remote Sens. 2020, 12, 1145. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, Z.M.; Brandmeier, M.; Straub, C. Forest damage assessment using deep learning on high resolution remote sensing data. Remote Sens. 2019, 11, 1976. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Olmo, V.; Tordoni, E.; Petruzzellis, F.; Bacaro, G. Use of sentinel-2 satellite data for windthrows monitoring and delimiting: The case of “Vaia” storm in friuli venezia. Remote Sens. 2021, 13, 1530. [Google Scholar] [CrossRef]
- Piragnolo, M.; Pirotti, F.; Zanrosso, C.; Lingua, E.; Grigolato, S. Responding to large-scale forest damage in an alpine environment with remote sensing, machine learning, and web-GIS. Remote Sens. 2021, 13, 1541. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sens. Environ. 2011, 115, 1665–1679. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- White, J.C.; Saarinen, N.; Wulder, M.A.; Kankare, V.; Hermosilla, T.; Coops, N.C.; Holopainen, M.; Hyyppä, J.; Vastaranta, M.; Service, C.F.; et al. Assessing spectral measures of post-harvest forest recovery with field plot data. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 102–114. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Puletti, N.; Bascietto, M. Towards a tool for early detection and estimation of forest cuttings by remotely sensed data. Land 2019, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Campbell, L.B. Mass data processing of time series Landsat imagery: Pixels to data products for forest monitoring. Int. J. Digit. Earth 2016, 9, 1035–1054. [Google Scholar] [CrossRef] [Green Version]
- Fragoso-campón, L.; Quirós, E.; Mora, J.; Gutiérrez, J.A.; Durán-barroso, P. Accuracy enhancement for land cover classification using lidar and multitemporal sentinel 2 images in a forested watershed. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 1280. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classi fi cation. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; Mazza, E.; Francini, S.; Travaglini, D.; Pegna, R.; White, J.C. Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series satellite images. Ann. For. Sci. 2020, 77, 40. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Marchetti, M.; Scarascia-Mugnozza, G.; Chirici, G. The Three Indices Three Dimensions algorithm (3I3D): A new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery. Int. J. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Giannetti, F.; Pegna, R.; Francini, S.; McRoberts, R.E.; Travaglini, D.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. A new method for automated clearcut disturbance detection in mediterranean coppice forests using landsat time series. Remote Sens. 2020, 12, 3720. [Google Scholar] [CrossRef]
- Puhm, M.; Deutscher, J.; Hirschmugl, M.; Wimmer, A.; Schmitt, U.; Schardt, M. A near real-time method for forest change detection based on a structural time series model and the Kalman filter. Remote Sens. 2020, 12, 3135. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.B.; Yang, Z.; Thomas, V.A.; Wynne, R.H. Edyn: Dynamic signaling of changes to forests using exponentially weighted moving average charts. Forests 2017, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.; et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- Lambert, J.; Drenou, C.; Denux, J.-P.; Balent, G.; Cheret, V. Monitoring forest decline through remote sensing time series analysis. GISci. Remote Sens. 2013, 50, 437–457. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Bayr, C.; Gallaun, H.; Kleb, U.; Kornberger, B.; Steinegger, M.; Winter, M. Satellite-based forest monitoring: Spatial and temporal forecast of growing index and short-wave infrared band. Geospat. Health 2016, 11, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Ben Abbes, A.; Bounouh, O.; Farah, I.R.; de Jong, R.; Martínez, B. Comparative study of three satellite image time-series decomposition methods for vegetation change detection. Eur. J. Remote Sens. 2018, 51, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-type forest change detection using BFAST and monthly landsat time series for monitoring spatiotemporal dynamics of forests in subtropical wetland. Remote Sens. 2020, 12, 341. [Google Scholar] [CrossRef] [Green Version]
- Mardian, J.; Berg, A.; Daneshfar, B. Evaluating the temporal accuracy of grassland to cropland change detection using multitemporal image analysis. Remote Sens. Environ. 2021, 255, 112292. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; Travaglini, D.; Nocentini, S.; Francini, S.; D’Amico, G.; Calvo, E.; Fasolini, D.; Broll, M.; Maistrelli, F.; et al. Forest damage inventory after the “Vaia” storm in Italy. For. Riv. Selvic. Ecol. For. 2019, 16, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Udali, A.; Andrighetto, N.; Grigolato, S.; Gatto, P. Economic impacts of forest storms—Taking stock of after-vaia situation of local roundwood markets in northeastern Italy. Forests 2021, 12, 414. [Google Scholar] [CrossRef]
- D’Amico, G.; Vangi, E.; Francini, S.; Giannetti, F.; Nicolaci, A.; Travaglini, D.; Massai, L.; Giambastiani, Y.; Terranova, C.; Chirici, G. Are we ready for a web-based national forest information system? State of the art of for-est maps and airborne laser scanning data availability in italy. IForest 2021. [Google Scholar] [CrossRef]
- Frantz, D.; Haß, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the fmask algorithm for sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sens. Environ. 2018, 215, 471–481. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Kelley, D. The OCE package. In Oceanographic Analysis with R; Springer: New York, NY, USA, 2018; pp. 91–101. [Google Scholar] [CrossRef]
- Marta, S. Planet Imagery Product Specifications; Planet Labs: San Francisco, CA, USA, 2018. [Google Scholar]
- Munafò, M. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; Edizione: Treviso, Italy, 2019; ISBN 9788844809645. [Google Scholar]
- Vangi, E.; Amico, G.D.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; Chirici, G. The new hyperspectral satellite PRISMA: Imagery for forest types discrimination. Sensors 2021, 21, 1182. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.J.E. STL: AA seasonal trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Cai, S.; Liu, D. Detecting change dates from dense satellite time series using a sub-annual change detection algorithm. Remote Sens. 2015, 7, 8705–8727. [Google Scholar] [CrossRef] [Green Version]
- Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A suite of tools for continuous land change monitoring in google earth engine. Front. Clim. 2020, 2, 1–19. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Stehman, S.V.; Liknes, G.C.; Næsset, E.; Sannier, C.; Walters, B.F. The effects of imperfect reference data on remote sensing-assisted estimators of land cover class proportions. ISPRS J. Photogramm. Remote Sens. 2018, 142, 292–300. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, USA, 1977; ISBN 9781351408479. [Google Scholar]
- Haidu, I.; Furtuna, P.R.; Lebaut, S. Detection of old scattered windthrow using low cost resources. The case of storm Xynthia in the Vosges Mountains, 28 February 2010. Open Geosci. 2019, 11, 492–504. [Google Scholar] [CrossRef]
- Baumann, M.; Ozdogan, M.; Wolter, P.T.; Krylov, A.; Vladimirova, N.; Radeloff, V.C. Landsat remote sensing of forest windfall disturbance. Remote Sens. Environ. 2014, 143, 171–179. [Google Scholar] [CrossRef]
- Babar, B.; Luppino, L.T.; Boström, T.; Anfinsen, S.N. Random forest regression for improved mapping of solar irradiance at high latitudes. Sol. Energy 2020, 198, 81–92. [Google Scholar] [CrossRef]
- Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Ramos-Bernal, R.N.; Arrogante-Funes, P.; Novillo, C.J. Topographic correction to Landsat imagery through slope classification by applying the SCS + C method in mountainous forest areas. ISPRS Int. J. Geo-Inf. 2017, 6, 287. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Vibrans, A.C.; Sannier, C.; Næsset, E.; Hansen, M.C.; Walters, B.F.; Lingner, D.V. Methods for evaluating the utilities of local and global maps for increasing the precision of estimates of subtropical forest area. Can. J. For. Res. 2016, 46, 924–932. [Google Scholar] [CrossRef] [Green Version]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manag. 2017, 391, 349–361. [Google Scholar] [CrossRef]
Map Class | Reference Class | Total | Stratum Weight | |||||
---|---|---|---|---|---|---|---|---|
Damaged | Undamaged | |||||||
Damaged | TP | FP | n1• = TP + FP | |||||
Undamaged | FN | TN | n2 = FN + FP |
Algorithm | Month from the Storm | [ha] | [ha] | SE% | OA | PA | UA | |
---|---|---|---|---|---|---|---|---|
BEAST | 1 | 11,119 | 26,345.6 | 236.93 | 48.2 | 0.15 | 0.18 | 0.17 |
2 | 12,369 | 23,246.7 | 187.93 | 51.4 | 0.21 | 0.2 | 0.2 | |
3 | 20,377 | 22,354.1 | 109.7 | 60.2 | 0.37 | 0.46 | 0.42 | |
4 | 22,614 | 199,922.9 | 88 | 62.1 | 0.39 | 0.46 | 0.42 | |
5 | 27,527 | 14,802.1 | 53.77 | 67.2 | 0.46 | 0.49 | 0.47 | |
6 | 36,766 | 13,149.1 | 35.76 | 75.2 | 0.57 | 0.7 | 0.64 | |
7 | 38,416 | 3725.3 | 9.69 | 89.7 | 0.87 | 0.87 | 0.83 | |
8 | 38,819 | 405.4 | 1.04 | 97.1 | 0.95 | 0.95 | 0.95 | |
9 | 40,018 | 402.1 | 1 | 97.8 | 0.95 | 0.97 | 0.96 | |
10 | 39,931 | 346.5 | 0.87 | 98 | 0.95 | 0.97 | 0.97 | |
11 | 40,126 | 346.5 | 0.86 | 98.1 | 0.96 | 0.98 | 0.97 | |
12 | 39,954 | 238.2 | 0.6 | 98.4 | 0.97 | 0.98 | 0.97 | |
CCDC | 1 | 10,203 | 28,631 | 280.6 | 43.5 | 0.09 | 0.18 | 0.09 |
2 | 11,388 | 28,099 | 246.7 | 44.3 | 0.1 | 0.1 | 0.1 | |
3 | 13,160 | 26,560 | 201.8 | 46.4 | 0.12 | 0.12 | 0.12 | |
4 | 14,268 | 21,110 | 148 | 52 | 0.18 | 0.16 | 0.17 | |
5 | 25,349 | 12,041 | 47.5 | 69 | 0.49 | 0.49 | 0.47 | |
6 | 32,355 | 10,295 | 31.8 | 75.5 | 0.59 | 0.63 | 0.61 | |
7 | 39,204 | 3254.52 | 8.3 | 91.1 | 0.82 | 0.9 | 0.86 | |
8 | 38,632 | 405.4 | 1.04 | 97 | 0.95 | 0.94 | 0.95 | |
9 | 40,008 | 402.1 | 1 | 97.8 | 0.95 | 0.97 | 0.96 | |
10 | 39,929 | 346.5 | 0.87 | 98 | 0.95 | 0.97 | 0.97 | |
11 | 40,116 | 346.5 | 0.86 | 98.1 | 95.8 | 98.1 | 0.97 | |
12 | 39,951 | 238.2 | 0.6 | 98.4 | 96.7 | 98.1 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannetti, F.; Pecchi, M.; Travaglini, D.; Francini, S.; D’Amico, G.; Vangi, E.; Cocozza, C.; Chirici, G. Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms. Forests 2021, 12, 680. https://doi.org/10.3390/f12060680
Giannetti F, Pecchi M, Travaglini D, Francini S, D’Amico G, Vangi E, Cocozza C, Chirici G. Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms. Forests. 2021; 12(6):680. https://doi.org/10.3390/f12060680
Chicago/Turabian StyleGiannetti, Francesca, Matteo Pecchi, Davide Travaglini, Saverio Francini, Giovanni D’Amico, Elia Vangi, Claudia Cocozza, and Gherardo Chirici. 2021. "Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms" Forests 12, no. 6: 680. https://doi.org/10.3390/f12060680
APA StyleGiannetti, F., Pecchi, M., Travaglini, D., Francini, S., D’Amico, G., Vangi, E., Cocozza, C., & Chirici, G. (2021). Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms. Forests, 12(6), 680. https://doi.org/10.3390/f12060680