Human Activity Affects Forest Fires: The Impact of Anthropogenic Factors on the Density of Forest Fires in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Anthropogenic Factors Potentially Related to Forest Fires
2.3. Statistical Analysis
3. Results
3.1. Correlation and Regression Analysis of Individual Variables
3.2. Multivariate Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; Update Edition; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Perlińska, A.; Szczygieł, R. Ryzyko i konsekwencje występowania pożarów w lasach. In Proceedings of the Zimowa Szkoła Leśna Przy Insty-Tucie Badawczym Leśnictwa VIII Sesja. Zagrożenia Lasu Oraz Jego Funkcji–Przyczyny, Konsekwencje i Szanse dla Gospodarki Leśnej, Sękocin Stary, Poland, 15–17 March 2016. (In Polish). [Google Scholar]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Liberta’, G.; Branco, A.; De Rigo, D.; Ferrari, D.; Maianti, P.; Artes Vivancos, T.; Costa, H.; et al. Forest Fires in Europe, Middle East and North Africa 2017; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Guzewski, P.; Wróblewski, D.; Małozięć, D. Wybrane problemy pożarów oraz ich skutków. In Czerwona Księga Pożarów; Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im, Ed.; Józefa Tuliszkowskiego Państwowy Instytut Badawczy: Józefów, Poland, 2016. (In Polish) [Google Scholar]
- Cary, G.J.; Banks, J.C.G. Fire regime sensitivity to global climate change: An Australian perspective. In Biomass Burning and Its Inter-Relationships with the Climate System; Innes, J.L., Beniston, M., Verstraete, M.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 233–246. [Google Scholar]
- Dwyer, E.; Gregoire, J.-M.; Pereira, J.M.C. Climate and vegetation as driving factors in global fire activity. In Biomass Burning and Its Inter-Relationships with the Climate System; Innes, J.L., Beniston, M., Verstraete, M.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 171–192. [Google Scholar]
- Gillett, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, D.; Gedalof, Z.; Peterson, D.L.; Mote, P. Climatic Change, Wildfire, and Conservation. Conserv. Biol. 2004, 18, 890–902. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; De Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Carlucci, M.; Zambon, I.; Colantoni, A.; Salvati, L. Socioeconomic Development, Demographic Dynamics and Forest Fires in Italy, 1961–2017: A Time-Series Analysis. Sustainability 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Levine, J.S. Global Biomass Burning: A Case Study of the Gaseous and Particulate Emissions Released to the Atmosphere During the 1997 Fires in Kalimantan and Sumatra, Indonesia. In Biomass Burning and Its Inter-Relationships with the Climate System; Innes, J.L., Beniston, M., Verstraete, M.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 15–32. [Google Scholar]
- Kim, S.J.; Lim, C.H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.K. Multi-Temporal Analysis of Forest Fire Probability Using Socio-Economic and Environmental Variables. Remote Sens. 2019, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Conedera, M.; Tinner, W. The interaction between forest fires and human activity in southern Switzerland. In Biomass Burning and Its Inter-Relationships with the Climate System; Innes, J.L., Beniston, M., Verstraete, M.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 247–261. [Google Scholar]
- Chou, Y.H.; Minnich, R.A.; Chase, R.A. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environ. Manag. 1993, 17, 129–140. [Google Scholar] [CrossRef]
- Huang, F.; Liu, X.-N.; Yuan, J.-G. Study on forest fire danger model with remote sensing based on GIS. Chin. Geogr. Sci. 2000, 10, 61–67. [Google Scholar] [CrossRef]
- Cardille, J.A.; Ventura, S.J.; Turner, M. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol. Appl. 2001, 11, 111–127. [Google Scholar] [CrossRef]
- Pew, K.; Larsen, C. GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. For. Ecol. Manag. 2001, 140, 1–18. [Google Scholar] [CrossRef]
- Mahmud, A.; Setiawan, I.; Mansor, S.; Shariff, A.; Pradhan, B.; Nuruddin, A. Utilization of geoinformation tools for the development of forest fire hazard mapping system: Example of Pekan fire, Malaysia. Open Geosci. 2009, 1, 456–462. [Google Scholar] [CrossRef]
- Puri, K.; Areendran, G.; Raj, K.; Mazumdar, S.; Joshi, P.K. Forest fire risk assessment in parts of Northeast India using geospatial tools. J. For. Res. 2011, 22, 641–647. [Google Scholar] [CrossRef]
- Yin, H.-W.; Kong, F.-H.; Li, X.-Z. RS and GIS-based forest fire risk zone mapping in da hinggan mountains. Chin. Geogr. Sci. 2004, 14, 251–257. [Google Scholar] [CrossRef]
- Adab, H.; Kanniah, K.D.; Solaimani, K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat. Hazards 2013, 65, 1723–1743. [Google Scholar] [CrossRef]
- Amatulli, G.; Rodrigues, M.J.; Trombetti, M.; Lovreglio, R. Assessing long-term fire risk at local scale by means of decision tree technique. J. Geophys. Res. Space Phys. 2006, 111, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dickson, B.G.; Prather, J.W.; Xu, Y.; Hampton, H.M.; Aumack, E.N.; Sisk, T.D. Mapping the probability of large fire occurrence in northern Arizona, USA. Landsc. Ecol. 2006, 21, 747–761. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Novillo, C.J.; Millington, J.D.A.; Gomez-Jimenez, I. GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landsc. Ecol. 2008, 23, 341–354. [Google Scholar] [CrossRef]
- Xu, N.; Shao, G.; Dai, L.; Hao, Z.; Tang, L.; Wang, H. Mapping forest fire risk zones with spatial data and principal component analysis. Sci. China Ser. E Technol. Sci. 2006, 49, 140–149. [Google Scholar] [CrossRef]
- Ferrara, C.; Salvati, L.; Corona, P.; Romano, R.; Marchi, M. The background context matters: Local-scale socioeconomic conditions and the spatial distribution of wildfires in Italy. Sci. Total. Environ. 2019, 654, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Vélez, R. Causes of forest fires in the Mediterranean Basin. In Risk Management and Sustainable Forestry, Proceedings of an EFI Conference, Bordeaux, France, 8 September 2001; Arbez, M., Birot, Y., Carnus, J.M., Eds.; European Forest Institute (EFI): Joensuu, Finland, 2002; pp. 35–42. [Google Scholar]
- Leone, V.; Lovreglio, R.; Martín, M.P.; Martínez, J.; Vilar, L. Human Factors of Fire Occurrence in the Mediterranean. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2009; pp. 149–170. [Google Scholar]
- Morello, T.F.; Ramos, R.M.; Anderson, L.O.; Owen, N.; Rosan, T.M.; Steil, L. Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon. Ecol. Econ. 2020, 169, 106501. [Google Scholar] [CrossRef]
- Sebastián-López, A.; Salvador-Civil, R.; Gonzalo-Jiménez, J.; SanMiguel-Ayanz, J. Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe. Eur. J. For. Res. 2007, 127, 149–163. [Google Scholar] [CrossRef]
- Del Hoyo, L.V.; Isabel, M.P.M.; Vega, F.J.M. Logistic regression models for human-caused wildfire risk estimation: Analysing the effect of the spatial accuracy in fire occurrence data. Eur. J. For. Res. 2011, 130, 983–996. [Google Scholar] [CrossRef]
- De Almeida, A.F.; Moura, P.V.E.; Almeida, A.; Villaca, E.M.P. The Relationship of Forest Fires to Agro-Forestry and Socio-Economic Parameters in Portugal. Int. J. Wildland Fire 1992, 2, 37–40. [Google Scholar] [CrossRef]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.; Passas, N. A decision support system for managing forest fire casualties. J. Environ. Manag. 2007, 84, 412–418. [Google Scholar] [CrossRef]
- Guldåker, N.; Hallin, P.-O. Spatio-temporal patterns of intentional fires, social stress and socio-economic determinants: A case study of Malmö, Sweden. Fire Saf. J. 2014, 70, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Weibel, P. Modelling and Assessing Fire Regimes in Mountain Forests of Switzerland. Ph.D. Dissertation, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland, 2009; p. 144. [Google Scholar]
- Costafreda-Aumedes, S.; Comas, C.; Vega-Garcia, C. Human-caused fire occurrence modelling in perspective: A review. Int. J. Wildland Fire 2017, 26, 983–998. [Google Scholar] [CrossRef]
- de la Riva, J.; Pérez-Cabello, F.; Lana-Renault, N.; Koutsias, N. Mapping wildfire occurrence at regional scale. Remote. Sens. Environ. 2004, 92, 363–369. [Google Scholar] [CrossRef]
- Koutsias, N.; Martínez-Fernández, J.; Allgöwer, B. Do Factors Causing Wildfires Vary in Space? Evidence from Geographically Weighted Regression. GIScience Remote Sens. 2010, 47, 221–240. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat. Hazards Earth Syst. Sci. 2013, 13, 311–327. [Google Scholar] [CrossRef]
- Skvarenina, J.; Mindas, J.; Holecy, J.; Tucek, J. Analysis of the natural and meteorological conditions during two largest forest fire events in the Slovak Paradise National Park. Meteorol. Časopis. 2004, 7, 167–171. [Google Scholar]
- Holsten, A.; Dominic, A.R.; Costa, L.; Kropp, J.P. Evaluation of the performance of meteorological forest fire indices for German federal states. For. Ecol. Manag. 2013, 287, 123–131. [Google Scholar] [CrossRef]
- Baranovskiy, N.; Zharikova, M. A Web-Oriented Geoinformation System Application for Forest Fire Danger Prediction in Typical Forests of the Ukraine. In Lecture Notes in Geoinformation and Cartography; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; pp. 13–22. [Google Scholar]
- Jurečka, F.; Možný, M.; Balek, J.; Žalud, Z.; Trnka, M. Comparison of Methods for the Assessment of Fire Danger in the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2019, 67, 1285–1295. [Google Scholar] [CrossRef] [Green Version]
- Polish National Forest Fire Information System NFFIS. Available online: http://bazapozarow.ibles.waw.pl:8080/ibl-ppoz-web/export.xhtml (accessed on 1 October 2018).
- Ramachandran, G.; Charters, D. Quantitative Risk Assessment in Fire Safety; Spon Press: New York, NY, USA, 2011. [Google Scholar]
- Szczygieł, R. Large-area Forest Fires in Poland. Saf. Fire Tech. 2012, 1, 67–78. (In Polish) [Google Scholar]
- Zajączkowski, G.; Jabłoński, M.; Jabłoński, T.; Małecka, M.; Kowalska, A.; Małachowska, J.; Piwnicki, J. Raport o stanie lasów w Polsce 2017. Państwowe Gospodarstwo Leśne Lasy Państwowe; Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Statistics Poland. Statistical Atlas of Poland. Available online: www.stat.gov.pl (accessed on 1 August 2020).
- De Diego, J.; Rúa, A.; Fernández, M. Designing a Model to Display the Relation between Social Vulnerability and Anthropogenic Risk of Wildfires in Galicia, Spain. Urban Sci. 2019, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Martinho, V.J.P.D. Socioeconomic Impacts of Forest Fires upon Portugal: An Analysis for the Agricultural and Forestry Sectors. Sustainability 2019, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Gehl, J. Life between Buildings; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
- Kumar, V.; Jana, A.; Ramamritham, K.A. Decision Framework to Assess Urban Fire Vulnerability in Cities of Developing Nations: Empirical Evidence from Mumbai. Geocarto Int. 2020, 1–17. [Google Scholar] [CrossRef]
- Chergui, B.; Fahd, S.; Santos, X.; Pausas, J.G. Socioeconomic Factors Drive Fire-Regime Variability in the Mediterranean Basin. Ecosystems 2018, 21, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Goparaju, L.; Oayum, A. Himalayan forest fire characterization in relation to topography, socio-economy and meteorology parameters in Arunachal Pradesh. India. Spat. Inf. Res. 2018, 26, 305–315. [Google Scholar] [CrossRef]
- BDOT10k. National Database of Topographic Objects; Polish Head Office of Geodesy and Cartography: Warszawa, Poland, 2021. Available online: http://www.gugik.gov.pl/ (accessed on 30 October 2017).
- Central Statistical Office. Statistics Poland. Available online: https://stat.gov.pl/en/ (accessed on 15 November 2020).
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002; p. 282. [Google Scholar]
- Nakaya, T. Geographically Weighted Regression (GWR) Software. GWR 4.0. ASU GeoDa Center Website. Available online: https://sgsup.asu.edu/sparc/gwr4 (accessed on 1 August 2019).
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In The Elements of Statistical Learning; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer Science and Business Media LLC: New York, NY, USA, 1998; pp. 199–213. [Google Scholar]
- Kalarus, M.; Schuh, H.; Kosek, W.; Akyilmaz, O.; Bizouard, C.; Gambis, D.; Gross, R.; Jovanovic´, B.; Kumakshev, S.; Kutter-er, H.; et al. Achievements of the Earth orientation parameters prediction comparison campaign. J. Geod. 2010, 84, 587–596. [Google Scholar] [CrossRef]
- Bartosiewicz, S. Procedura „stopniowego” konstruowania liniowych modeli ekonometrycznych o wielu zmiennych objaśniających. Acta Univ. Lodz. Folia Oecon. 2007, 205, 11–16. (In Polish) [Google Scholar]
- Golinowska, S. Twenty Years of Poverty Research and Policy in Poland. Polit. Społecz. 2010, 9, 7–13. [Google Scholar]
- Mancini, L.D.; Corona, P.; Salvati, L. Ranking the importance of Wildfires’ human drivers through a multi-model regression approach. Environ. Impact Assess. Rev. 2018, 72, 177–186. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Środowiska z dnia 13 lipca 2015 r. Zmieniające Rozporządzenie w Sprawie Szczegółowych Zasad Zabezpieczenia Przeciwpożarowego Lasów. Dz.U. 2015, Poz. 1070. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001070 (accessed on 20 April 2021). (In Polish)
- Viedma, O.; Urbieta, I.R.; Moreno, J.M. Wildfires and the role of their drivers are changing over time in a large rural area of west-central Spain. Sci. Rep. 2018, 8, 17797. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Jiménez, A.; De La Riva, J. Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Nat. Hazards 2016, 84, 2049–2070. [Google Scholar] [CrossRef] [Green Version]
- Zborowski, A.; Raźniak, P. Suburbanizacja rezydencjonalna w Polsce: Ocena procesu. Stud. Miej. 2013, 9, 37–50. (In Polish) [Google Scholar]
Manifestation of Human Activity | Factors (Acronyms for Variables) |
---|---|
Buildings and land use | Share of total district area (%):
|
Transport | Density of transport lines running through forests (length in meters per square kilometer of forest):
|
Demography |
|
Economy |
|
Other |
|
Acronym | r Value (* if p < 0.05) | adj R2 LR | adj R2 GWR | Value of Diff-Criterion |
---|---|---|---|---|
Buildings and land use | ||||
BOUFORIND | 0.646 * | 0.414 | 0.685 | −172.118 |
BURES | 0.384 * | 0.137 | 0.423 | −87.777 |
BUIND | 0.368 * | 0.126 | 0.312 | −36.057 |
BUOTHER | 0.320 * | 0.093 | 0.310 | −43.862 |
BOUFORRES | 0.321 * | 0.098 | 0.418 | −100.919 |
BUTOUR | 0.272 * | 0.067 | 0.628 | −277.936 |
Roads and rail | ||||
ROADLOC | 0.246 * | 0.056 | 0.211 | −26.218 |
ROADMAIN | 0.244 * | 0.053 | 0.244 | −44.493 |
RAILEL | 0.207 * | 0.037 | 0.210 | −26.962 |
RAILNEL | 0.177 * | 0.026 | 0.051 | −0.869 |
ROADHIGH | 0.101 * | 0.005 | 0.049 | −1.008 |
ROADSEC | 0.100 | 0.005 | 0.223 | −49.549 |
Demography | ||||
DENS | 0.407 * | 0.154 | 0.596 | −217.538 |
DENSURB | 0.348 * | 0.112 | 0.490 | −134.125 |
DEMBUR | 0.038 | −0.004 | 0.313 | −140.611 |
Economy | ||||
EVEHICS | 0.406 * | 0.154 | 0.571 | −196.747 |
ECENT | 0.242 * | 0.053 | 0.407 | −113.998 |
EPREWORK | −0.239 * | 0.051 | 0.287 | −245.487 |
EWORK | 0.165 * | 0.022 | 0.349 | −2878.183 |
EPOSTWORK | 0.115 * | 0.008 | 0.239 | −127.190 |
EUNEMPL | −0.102 * | 0.005 | 0.016 | 2.564 |
ESPS | −0.096 | 0.004 | 0.015 | 2.780 |
Other | ||||
OHEATVIL | −0.417 * | 0.165 | 0.605 | −218.045 |
OELINES | 0.308 * | 0.089 | 0.310 | −62.636 |
OCRIM | 0.205 * | 0.037 | 0.337 | −82.835 |
OHEATCIT | 0.140 * | 0.014 | 0.218 | −89.240 |
OPARKL | 0.055 | −0.003 | 0.241 | −53.436 |
OLANDFILL | 0.034 | −0.004 | 0.115 | −0.940 |
Period | Independent Variables | Adjusted R2 | AIC | Standard Error of Estimation | Significant Local/Mixed Model Improvement (According to ANOVA) | Model Selection | |||
---|---|---|---|---|---|---|---|---|---|
MLR | GWR/MGWR | MLR | GWR/MGWR | MLR | GWR/MGWR | ||||
2007–2017 | BOUFORIND; ROADLOC; OHEATCIT | 0.45 | 0.70 | 949.00 | 745.30 | 0.84 | 0.62 | + | GWR |
BOUFORIND; ROADLOC | 0.44 | 0.72 | 952.55 | 722.34 | 0.84 | 0.60 | + | GWR | |
2007 | BOUFORIND; ROADLOC | 0.27 | 0.51 | −470.38 | −596.81 | 0.13 | 0.11 | + | GWR |
2008 | BOUFORIND; ROADLOC | 0.26 | 0.54 | −216.80 | −374.91 | 0.18 | 0.14 | + | GWR |
2009 | BOUFORIND; ROADLOC | 0.42 | 0.76 | −423.31 | −733.23 | 0.14 | 0.09 | + | GWR |
2010 | BOUFORIND; ROADLOC; ROADHIGH | 0.21 | 0.31 | −779.25 | −818.91 | 0.09 | 0.08 | + | GWR |
BOUFORIND; ROADLOC | 0.20 | 0.60 | −775.12 | −1009.82 | 0.09 | 0.06 | + | GWR | |
2011 | BOUFORIND | 0.30 | 0.62 | −183.21 | −393.58 | 0.19 | 0.14 | + | GWR |
BOUFORIND; ROADLOC | 0.30 | 0.72 | −182.86 | −500.47 | 0.19 | 0.12 | + | GWR | |
2012 | BOUFORIND; OLANDFILL; ROADLOC | 0.39 | 0.61 | −406.42 | −541.72 | 0.14 | 0.11 | + | GWR |
BOUFORIND; ROADLOC | 0.35 | 0.53 | −378.31 | −479.18 | 0.15 | 0.11 | + | GWR | |
2013 | BOUFORIND; OHEATCIT2013; ROADLOC | 0.18 | 0.37 | −946.69 | −1002.44 | 0.07 | 0.06 | + | MGWR |
BOUFORIND; ROADLOC | 0.16 | 0.37 | −942.43 | −1022.72 | 0.07 | 0.06 | + | MGWR | |
2014 | BOUFORIND; ROADLOC | 0.38 | 0.67 | −689.66 | −907.45 | 0.10 | 0.07 | + | GWR |
2015 | RAILNEL; BOUFORRES; ROADLOC; (-)EUNEMPL; ESPS2015 | 0.19 | 0.33 | −224.87 | −284.63 | 0.18 | 0.16 | + | GWR |
BOUFORIND; ROADLOC | 0.14 | 0.35 | −206.39 | −292.19 | 0.18 | 0.16 | + | GWR | |
2016 | BOUFORIND; ROADLOC; ROADHIGH | 0.23 | 0.38 | −494.08 | −568.03 | 0.13 | 0.11 | + | GWR |
BOUFORIND; ROADLOC | 0.21 | 0.64 | −486.95 | −752.31 | 0.13 | 0.09 | + | GWR | |
2017 | BOUFORIND; ROADLOC | 0.17 | 0.56 | −935.63 | −1146.69 | 0.07 | 0.05 | + | MGWR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolanek, A.; Szymanowski, M.; Raczyk, A. Human Activity Affects Forest Fires: The Impact of Anthropogenic Factors on the Density of Forest Fires in Poland. Forests 2021, 12, 728. https://doi.org/10.3390/f12060728
Kolanek A, Szymanowski M, Raczyk A. Human Activity Affects Forest Fires: The Impact of Anthropogenic Factors on the Density of Forest Fires in Poland. Forests. 2021; 12(6):728. https://doi.org/10.3390/f12060728
Chicago/Turabian StyleKolanek, Aleksandra, Mariusz Szymanowski, and Andrzej Raczyk. 2021. "Human Activity Affects Forest Fires: The Impact of Anthropogenic Factors on the Density of Forest Fires in Poland" Forests 12, no. 6: 728. https://doi.org/10.3390/f12060728
APA StyleKolanek, A., Szymanowski, M., & Raczyk, A. (2021). Human Activity Affects Forest Fires: The Impact of Anthropogenic Factors on the Density of Forest Fires in Poland. Forests, 12(6), 728. https://doi.org/10.3390/f12060728