Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S. Ito & S. Imai in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. DNA Extraction, Library Construction, and Illumina Miseq Sequencing
2.3. Processing and Analyzing of Sequencing Data
3. Results
3.1. Statistical Data Analysis for Bacterial Communities in Sampling Sites
3.2. Statistical Data Analysis for Fungal Communities in Sampling Sites
3.3. Relative Abundance of Bacterial Communities
3.4. Relative Abundance of Fungal Communities
3.5. Similarity of Bacterial and Fungal Communities within/across Sampling Sites
4. Discussion
4.1. Distinct Bacterial Community Structure
4.2. Distinct Fungal Community Structure
4.3. Differences between Microbial Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogawa, M. The Biology of Matustake Mushroom; Tshkiji Shokkan: Tokyo, Japan, 1978; p. 326. [Google Scholar]
- Yamada, A.; Maeda, K.; Ohmasa, M. Ectomycorrhiza formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 1999, 40, 455–463. [Google Scholar] [CrossRef]
- Kawai, M.; Terada, O. Artificial reproduction of Tricholoma matsutake (S. Ito et Imai) Sing. II. Effects of vitamins, nucleic acid-related substances, phytohormones and metal ions in the media on the vegetative growth of T. matsutake. Trans. Mycol. Soc. Jpn. 1976, 17, 168–174. [Google Scholar]
- Ogawa, M.; Umehara, T.; Kontani, S.; Yamaji, K. Cultivating method of the mycorrhizal fungus, Tricholoma matsutake (Ito et Imai) Sing. (1) Growing method of pine saplings infected with T. matsutake in the field. J. Jpn. For. Soc. 1978, 60, 119–128. [Google Scholar] [CrossRef]
- Kawagishi, H.; Hamajima, K.; Takanami, R.; Nakamura, T.; Sato, Y.; Akiyama, Y.; Akiyama, Y.; Sano, M.; Tanaka, O. Growth promotion of mycelia of the matsutake mushroom Tricholoma matsutake by D-isoleucine. Biosci. Biotechnol. Biochem. 2004, 68, 2405–2407. [Google Scholar] [CrossRef]
- Vaario, L.M.; Fritze, H.; Spetz, P.; Heinonsalo, J.; Hanajik, P.; Pennanen, T. Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl. Environ. Microbiol. 2011, 77, 8523–8531. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 2nd ed.; Academic Press: London, UK, 1997. [Google Scholar]
- Ohara, H.; Hamada, M. Disappearance of bacteria from the zone of active mycorrhizas in Tricholoma matsutake (S. Ito et Imai) Singer. Nature 1967, 213, 528–529. [Google Scholar] [CrossRef]
- Song, H.; Min, K. Microfungal flora of Tricholoma matsutake producing and nonproducing sites in the forest of Pinus densiflora. Korean J. Mycol. 1991, 19, 109–119. [Google Scholar]
- Kim, M.; Yoon, H.J.; You, Y.H.; Kim, Y.E.; Woo, J.R.; Seo, Y.G.; Lee, G.M.; Kim, Y.J.; Kong, W.S.; Kim, J.G. Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J. Microbiol. Biotechnol. 2013, 23, 1347–1356. [Google Scholar] [CrossRef]
- Oh, S.Y.; Fong, J.J.; Park, M.S.; Lim, Y.W. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS ONE. 2016, 11, e0168573. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Narimatsu, M.; Nara, K.; Hogetsu, T. Tricholoma matsutake in a natural Pinus densiflora forest: Correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 2006, 171, 825–836. [Google Scholar] [CrossRef]
- Kim, M.; Yoon, H.; Kim, Y.E.; Kim, Y.J.; Kong, W.S.; Kim, J.G. Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing. J. Appl. Micro 2014, 117, 699–710. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The mycorrhiza helper bacteria revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Linderman, R.G. Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Phytopathology 1988, 78, 366–371. [Google Scholar]
- Garbaye, J. Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol. 1994, 128, 197–210. [Google Scholar] [CrossRef]
- Vivas, A.; Azon, R.; Biro, B.; Barea, J.M.; Ruiz-Lozano, J.M. Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pretense L. under lead toxicity. Can. J. Microbiol. 2003, 49, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Nam, J.W.; Jo, J.W.; Kim, S.Y.; Han, J.G.; Hyun, M.W.; Sung, G.H.; Han, S.K. Studies on seasonal dynamics of soil-higher fungal communities in Mongolian oak-dominant Gwangneung forest in Korea. J. Mcirobiol. 2016, 54, 14–22. [Google Scholar] [CrossRef]
- Oberauner, L.; Zachow, C.; Lackner, S.; Hogenauer, C.; Smolle, K.H.; Berg, G. The ignored diversity: Complex bacterial communities in intensive care units revealed by 16S pyrosequencing. Sci. Rep. 2013, 3, 1413. [Google Scholar] [CrossRef]
- Uroz, S.; Ioannidis, P.; Lengelle, J.; Cebron, A.; Morin, E.; Buee, M.; Martin, F. Functional assay and metagenomics analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS ONE 2013, 8, e55925. [Google Scholar] [CrossRef] [PubMed]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Li, W.; Fu, L.; Niu, B.; Wu, S.; Wooley, J. Ultrafast clustering algorithms for metagenomics sequence analysis. Brief. Bioinform. 2012, 13, 656–668. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, 633–642. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schige, L.D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol. Lett. 2005, 8, 148–159. [Google Scholar] [CrossRef]
- Hosford, D.; Pliz, D.; Molina, R.; Amaranthus, M. Ecology and Management of the Commercially Harvested American Matsutake; General Technical Report PNW-GTR-412; USDA, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1997; p. 66.
- Oh, S.Y.; Park, M.S.; Cho, H.J.; Lim, Y.W. Diversity and effect of Trichoderma isolated from the roots of Pinus densiflora within the fairy ring of pine mushroom (Tricholoma matsutake). PLoS ONE 2018, 13, d0205900. [Google Scholar] [CrossRef]
- Kataoka, K.; Shiro, M.; Okura, R.; Oizumi, K.; Fujita, T.; Sasamori, T.; Tokitoh, N.; Yamada, A.; Tanaka, C.; Yamaguchi, M.; et al. The (oxalate) aluminate complex as an antimicrobial substance protecting the “Shiro” of Tricholoma matsutake from soil micro-organisms. Biosci. Biotechnol. Biochem. 2017, 81, 102–111. [Google Scholar] [CrossRef]
- Hur, T.C.; Park, H. Dynamics of soil microflora and soil enzymes around the fairy-rings of Tricholoma matsutake. J. Korean For. Soc. 2001, 90, 767–773. [Google Scholar]
- Hur, T.C.; Park, H.; Joo, S.H.; Ka, K.H. Dynamic changes of soil physicochemical properties in the fairy-rings of Tricholoma matsutake. J. Korean For. Soc. 2004, 93, 26–34. [Google Scholar]
- Yun, W.; Hall, I.R.; Evans, L.A. Ectomycorrhizal fungi with edible fruiting bodies 1. Tricholoma matsutake and related fungi. Econ. Bot. 1997, 51, 311–327. [Google Scholar] [CrossRef]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rDNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, G. Cross-biome metagenomics analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef]
- Takakura, Y. Tricholoma matsutake fruit bodies secrete hydrogen peroxide as a potent inhibitor of fungal growth. Can. J. Microbiol. 2015, 61, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Buée, M.; Reich, M.; Murat, C.; Morin, E.; Nilsson, R.H.; Uroz, S.; Martin, F. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009, 184, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, Y. Studies on the life history of Japaneses pine mushroom, Armillaria matsutake Ito et Imai. Bull. Hiroshima Agric. Coll. 1963, 2, 105–145. [Google Scholar]
- Marino, E.D.; Scattolin, L.; Bodensteiner, P.; Agerer, R. Sistotrema is a genus with ectomycorrhizal species confirmation of what sequence studies already suggested. Mycol. Prog. 2008, 7, 169–176. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Mi, F.; Tang, X.; He, X.; Cao, Y.; Liu, C.; Yang, D.; Dong, J.; Zhang, K.; et al. Recent advances in population genetics of ectomycorrhizal mushrooms Russula spp. Mycology 2015, 6, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Obase, K.; Cha, J.Y.; Lee, J.K.; Lee, S.Y.; Lee, J.H.; Chun, K.W. Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 2009, 20, 39–49. [Google Scholar] [CrossRef]
- Obase, K.; Lee, J.K.; Lee, S.Y.; Chun, K.W. Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii in the eastern coastal pine forests of Korea. Mycoscience 2011, 52, 383–391. [Google Scholar] [CrossRef]
- Kujawska, M.B.; Rudawska, M.; Wilgan, R.; Leski, T. Similarities and differences among soil fungal assemblages in managed forests and formerly managed forest reserves. Forests 2021, 12, 353. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Firestone, M.K. Response of microbial community composition and function to soil climate change. Microb. Ecol. 2005, 52, 716–724. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Zhao, Z.; Wei, H.; Gao, B.; Gu, W. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 2017, 7, 46221. [Google Scholar] [CrossRef]
- Čejka, T.; Trnka, M.; Krusic, P.J.; Stobbe, U.; Oliach, D.; Václavík, T.; Tegel, W.; Büntgen, U. Predicted climate change will increase the truffle cultivation potential in central Europe. Sci. Rep. 2020, 10, 21281. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Luedeling, E.; Chen, G.; Hyde, K.D.; Yang, Y.; Zhou, D.; Xu, J.; Yang, Y. Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Divers. 2012, 56, 189–198. [Google Scholar] [CrossRef]
- Stucki, J.W.; Gan, H.; Wilkinson, H.T. Effects of microorganisms on phyllosilicate properties and behavior. In Interacting Processes in Soil Science; Wagenet, R.J., Baveye, P., Stewart, B.A., Eds.; Advances in Soil Science; CRC Press: Boca Raton, FL, USA, 1992; pp. 227–251. [Google Scholar]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caproaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Hert, D.G.; Fredlake, C.P.; Barron, A.E. Advantages and limitations of next-generation sequencing technologies: A comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 2008, 29, 4618–4626. [Google Scholar] [CrossRef]
Sites | Location | Temp./Precipitation (Elevation) | Major Vegetation (Canopy/Understory) |
---|---|---|---|
Yangyang | Gangwon-do | 13.9 °C/1517.5 mm | Pinus densiflora Siebold & Zucc./ |
(160 m ELV.) | Rhododendron schlippen Maxim. R. mucronulatum Turcz. Smilax nipponica Miq. Carex fernaldiana H.Lév & Vaniot | ||
Bonghwa | Gyeonsangbuk-do | 11.5 °C/970.5 mm | Pinus densiflora/ |
(360 m ELV.) | Rhododendron schlippen | ||
R. mucronulatum Melampyrum roseum Maxim. Pteridium aquilinum Underw. ex A. Heller Smilax nipponica | |||
Carex fernaldiana |
B_Shiro+ | B_Shiro− | Y_Shiro+ | Y_Shiro− | |
---|---|---|---|---|
Number of total reads | 115,236 | 116,643 | 112,489 | 129,607 |
Number of OTUs | 340 | 375 | 221 | 379 |
Chao1 estimation | 349.5 | 385.1 | 230.0 | 400.7 |
Shannon index | 4.628 | 6.777 | 5.187 | 6.212 |
Inverse simpson index | 0.885 | 0.977 | 0.937 | 0.969 |
Good’s coverage | 0.999 | 0.997 | 0.999 | 0.997 |
B_Shiro+ | B_Shiro− | Y_Shiro+ | Y_Shiro− | |
---|---|---|---|---|
Number of total reads | 142,261 | 113,784 | 127,090 | 113,859 |
Number of OTUs | 66 | 364 | 107 | 244 |
Chao1 estimation | 66.5 | 364 | 111.7 | 246.1 |
Shannon index | 1.355 | 5.846 | 1.873 | 3.845 |
Inverse simpson index | 0.498 | 0.948 | 0.505 | 0.840 |
Good’s coverage | 1.000 | 1.000 | 1.000 | 1.000 |
Phylum | Family | Genus | B_Shiro+ | B_Shiro− | Y_Shiro+ | Y_Shiro− |
---|---|---|---|---|---|---|
Acidobacteria | Acidobacteriaceae | Acidipila | 0.09% | 0.52% | 2.98% | 2.90% |
Acidobacterium | 1.97% | 11.46% | 0.32% | 4.82% | ||
Edaphobacter | 0.12% | 5.06% | 1.55% | 3.66% | ||
Granulicella | 0.07% | 1.29% | 0.06% | 0.29% | ||
Silvibacterium | 0.05% | 0.96% | 1.28% | 1.13% | ||
Terriglobus | 0.01% | 1.27% | 0% | 0.07% | ||
Bryobacteraceae | Paludibaculum | 0.54% | 7.19% | 0.18% | 2.23% | |
Thermoanaerobaculaceae | Thermoanaerobaculum | 0% | 1.14% | 0% | 0% | |
Actionobacteria | Mycobacteriaceae | Mycobacterium | 1.57% | 1.21% | 13.48% | 14.50% |
Mycolicibacterium | 0.33% | 0.33% | 0.47% | 1.02% | ||
Pseudonocardiaceae | Labedaea | 0.01% | 0% | 13.37% | 0.45% | |
Pseudonocardia | 0.01% | 0.01% | 1.16% | 0.35% | ||
Streptosporangiaceae | Sinosporangium | 0.03% | 0.01% | 1.95% | 0.52% | |
Thermomonosporaceae | Actinoallomurus | 0.44% | 0.86% | 18.17% | 4.61% | |
Actinocorallia | 0.09% | 0.22% | 1.79% | 1.24% | ||
Actinomadura | 0.12% | 0.47% | 3.91% | 2.06% | ||
Bacteriodetes | Chitinophagaceae | Flavitalea | 0.02% | 3.27% | 0.01% | 0.11% |
Niasterlla | 0% | 3.57% | 0% | 0% | ||
Puia | 0.44% | 1.54% | 0.43% | 2.13% | ||
Flavobacteriaceae | Flavobacterium | 4.44% | 0% | 0% | 0% | |
Sphingobacteriaceae | Mucilaginibacter | 26.19% | 1.79% | 0.33% | 0.91% | |
Pedobacter | 2.92% | 0% | 0% | 0% | ||
Sphingobacterium | 8.56% | 0% | 0% | 0% | ||
Chloroflexi | Dictyobacteraceae | Dictyobacter | 0.34% | 0.15% | 8.63% | 2.88% |
Thermosporotrichaceae | Thermosporothrix | 0% | 0% | 0.61% | 2.57% | |
Planctomycetes | Tepidisphaeraceae | Tepidisphaera | 0.17% | 1.01% | 0% | 0.20% |
Proteobacteria | Caulobacteraceae | Caulobacter | 0.61% | 0.67% | 0.09% | 1.43% |
Phenylobacterium | 0.26% | 1.39% | 0.40% | 1.82% | ||
Micropepsaceae | Rhizomicrobium | 0.56% | 7.49% | 0.30% | 1.48% | |
Bradyrhizobiaceae | Bradyrhizobium | 0.93% | 6.75% | 2.88% | 2.78% | |
Acetobacteraceae | Rhodopila | 0.14% | 0.90% | 3.58% | 0.70% | |
Stella | 0.39% | 0.93% | 1.57% | 4.24% | ||
Rhodospirillaceae | Aliidongia | 0.40% | 0.61% | 1.98% | 0.79% | |
Sphingomonadaceae | Novosphingobium | 1.60% | 0% | 0% | 0% | |
Burkholderiaceae | Caballeronia | 0.50% | 0.03% | 2.18% | 0.61% | |
Paraburkholderia | 2.13% | 0.61% | 1.05% | 0.84% | ||
Oxalobacteraceae | Janthinobacterium | 21.94% | 0% | 0% | 0% | |
Granulosicoccaceae | Sulfuriflexus | 0.40% | 1.01% | 0.79% | 2.47% | |
Sinobacteraceae | Povalibacter | 0.86% | 1.15% | 0.31% | 1.38% | |
Pseudomonadaceae | Pseudomonas | 6.73% | 0% | 0% | 0% | |
Xanthromonadaceae | Stenotrophomonas | 1.76% | 0% | 0% | 0% | |
Terrimicrobium | 0.30% | 0.25% | 3.81% | 7.29% |
Phylum | Family | Genus | B_Shiro+ | B_Shiro− | Y_Shiro+ | Y_Shiro− |
---|---|---|---|---|---|---|
Basidiomycota | Tricholomataceae | Tricholoma | 63.73% | 0.08% | 68.86% | 29.46% |
Atheliales | Amphinema | 0% | 16.99% | 0% | 0% | |
Tylospora | 0.01% | 10.55% | 0% | 0% | ||
Astraeaceae | Astraeus | 0% | 1.46% | 0% | 0% | |
Cantharellales | Sistotrema | 0% | 0% | 2.36% | 0.11% | |
Hydnaceae | Hydnum | 0.01% | 0.18% | 0% | 1.58% | |
Russulaceae | Russula | 2.04% | 0.30% | 0% | 0.25% | |
Sebacinaceae | Sebacina | 0% | 4.59% | 0% | 0% | |
Thelephiraceae | Tomentella | 0.02% | 1.54% | 0% | 0% | |
unidentified | 0.03% | 1.43% | 0.26% | 0.23% | ||
unidentified | unidentified | 0.02% | 0% | 1.34% | 1.85% | |
Trimorphomycetaceae | Saitozyma | 0% | 2.10% | 0.01% | 0.02% | |
Ascomycota | Herpotrichiellaceae | Cladophialophora | 0.08% | 7.26% | 0.08% | 0.85% |
unidentified | 0.04% | 3.40% | 0.01% | 1.73% | ||
unidentified | unidentified | 0% | 0.98% | 0.17% | 3.84% | |
Aspergillaceae | Penicillium | 0% | 1.34% | 0.01% | 0.21% | |
Hyaloscyphaceae | unidentified | 0.04% | 1.49% | 0.18% | 1.13% | |
Myxotrichaceae | Oidiodendron | 0.10% | 1.64% | 2.38% | 7.79% | |
unidentified | unidentified | 0.03% | 1.52% | 0.64% | 1.14% | |
unidentified | unidentified | 0.03% | 1.81% | 0% | 0.16% | |
Mortierellomycota | Mortierellaceae | Mortierella | 0.01% | 5.48% | 0.11% | 4.11% |
Mucoromycota | Mucoromycotina | Bifiguratus | 0.13% | 0% | 0.70% | 1.65% |
Umbelosidaceae | Umbelopsis | 31.16% | 1.21% | 19.62% | 33.51% | |
unidentified | unidentified | unidentified | 0.04% | 18.19% | 0.30% | 2.74% |
B_Shiro+ | B_Shiro− | Y_Shiro+ | Y_Shiro− | ||
---|---|---|---|---|---|
Bacterial community | B_Shiro+ | 1 | 0.702 | 0.6 | 0.769 |
B_Shiro− | 1 | 0.565 | 0.565 | ||
Y_Shiro+ | 1 | 0.625 | |||
Y_Shiro− | 1 | ||||
Fungal community | B_Shiro+ | 1 | 0.648 | 0.578 | 0.615 |
B_Shiro− | 1 | 0.628 | 0.666 | ||
Y_Shiro+ | 1 | 0.666 | |||
Y_Shiro− | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, G.-H.; Cho, J.-H.; Kim, O.-T.; Han, J.-G. Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S. Ito & S. Imai in Korea. Forests 2021, 12, 758. https://doi.org/10.3390/f12060758
An G-H, Cho J-H, Kim O-T, Han J-G. Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S. Ito & S. Imai in Korea. Forests. 2021; 12(6):758. https://doi.org/10.3390/f12060758
Chicago/Turabian StyleAn, Gi-Hong, Jae-Han Cho, Ok-Tae Kim, and Jae-Gu Han. 2021. "Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S. Ito & S. Imai in Korea" Forests 12, no. 6: 758. https://doi.org/10.3390/f12060758
APA StyleAn, G. -H., Cho, J. -H., Kim, O. -T., & Han, J. -G. (2021). Metagenomic Analysis of Bacterial and Fungal Communities Inhabiting Shiro Dominant Soils of Two Production Regions of Tricholoma Matsutake S. Ito & S. Imai in Korea. Forests, 12(6), 758. https://doi.org/10.3390/f12060758