Delayed Inhibition of Photosynthetic Performance—Three Linden Species in an Urban Environment
Abstract
:1. Introduction
- The PSII reaction can be delayed and revealed few weeks after the stress factor appearance.
- The species differ in the course of aging during normal and drought years.
2. Materials and Methods
2.1. Study Sites and Objects
2.2. Climatic Data
2.3. Leaves Collection and Analysis
2.3.1. Chlorophyll a Fluorescence
2.3.2. Chlorophylls and Carotenoids Content
2.4. Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. OJIP-Transient
3.3. OJIP Test and Photosynthetic Pigment Parameters during the Normal Year
3.4. OJIP Test and Photosynthetic Pigment Parameters during the Year with a Precipitation Deficit
3.5. Cluster Analysis
4. Discussion
5. Conclusions
- Investigated species of linden trees, i.e., Tilia tomentosa, T. × europaea and T. cordata revealed delayed reactions to precipitation deficits. The photosynthetic performance of the investigated species was disturbed in the late senescence phase after summer with precipitation deficits. Those changes were less evident during senescence after summer without precipitation deficits.
- Changes in the OJIP test included mostly parameters related to the number of active reaction centres. After the summer precipitation deficits, increases of the ABS/RC, DI0/RC and TR0/RC and a decrease of ET0/RC were related to the decrease of active RCs.
- Different severities of the senescence-related reactions were observed in T. × europaea. This heterotic species demonstrated a more intense decrease of certain parameters during late senescence (N) compared with other species (i.e., Fm, Fv/Fm and Fv/F0). In the years with precipitation deficits, those differences were more evident. For example, compared to full development, the decrease in the maximum fluorescence (Fm) during late senescence (D) was about 30% for T. cordata and T. tomentosa and about 75% for T. × europaea. Despite the close relation of T. cordata and T. × europaea, the species showed different physiological traits during senescence after precipitation deficits in summer.
- The presented results underline the need for monitoring tree conditions not only during stress but also in the wider perspective, concerning a prolonged time of measurement for at least few weeks after the stress appearance. Practitioners and urban planners need to take into account that the impact of a stress factor on tree physiology can occur many weeks beyond its occurrence.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Loon, A.F.; Stahl, K.; Di Baldassarre, G.; Clark, J.; Rangecroft, S.; Wanders, N.; Gleeson, T.; Van Dijk, A.I.; Tallaksen, L.M.; Hannaford, J.; et al. Drought in a human-modified world: Reframing drought definitions, understanding, and analysis approaches. Hydrol. Earth Syst. Sci. 2016, 20, 3631–3650. [Google Scholar] [CrossRef] [Green Version]
- Long, A.L. Drought. In Disturbance and Sustainability in Forests of the Western United States; Barrett, T.M., Robertson, G.C., Eds.; Gen. Tech. Rep. PNW-GTR-992; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2021; Volume 231, p. 992. [Google Scholar]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Integrated Drought Management Programme (IDMP); WMO: Geneva, Switzerland, 2017. [Google Scholar]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate change and drought: From past to future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Ghadami, M.; Raziei, T.; Amini, M.; Modarres, R. Regionalization of drought severity–duration index across Iran. Nat. Hazards 2020, 103, 2813–2827. [Google Scholar] [CrossRef]
- United Nations, Department of Economic, Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2015. [Google Scholar]
- Czaja, M.; Kołton, A.; Muras, P. The Complex Issue of Urban Trees—Stress Factor Accumulation and Ecological Service Possibilities. Forests 2020, 11, 932. [Google Scholar] [CrossRef]
- Yang, J.-L.; Zhang, G.L. Formation, characteristics and eco-environmental implications of urban soils—A review. Soil Sci. Plant Nutr. 2015, 61 (Suppl. 1), 30–46. [Google Scholar] [CrossRef] [Green Version]
- Day, S.D.; Wiseman, P.E.; Dickinson, S.B.; Harris, J.R. The Root Ecology in the Urban Environment and Implications for a Sustainable Rhizosphere. Arboric. Urban 2010, 36, 193–204. [Google Scholar]
- Zhang, P.; Ariaratnam, S.T. Meta-analysis of storm water impacts in urbanized cities including runoff control and mitigation strategies. J. Sustain. Dev. 2018, 11, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Moser, A.; Rötzer, T.; Pauleit, S.; Pretzsch, H. The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.). Forests 2016, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Zhang, C.; Stratopoulos, L.M.F.; Pretzsch, H.; Rötzer, T. How do Tilia cordata Greenspire trees cope with drought stress regarding their biomass allocation and ecosystem services? Forests 2019, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Cornic, G. Drought stress inhibits photosynthesis by decreasing stomatal aperture—Not by affecting ATP synthesis. Trends Plant Sci. 2000, 5, 187–188. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J.; et al. Chapter 15—The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants. In Emerging Technologies and Management of Crop Stress Tolerance; Ahmad, P., Rasool, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 347–384. [Google Scholar] [CrossRef]
- Gururani, M.A.; Venkatesh, J.; Tran, L.S.P. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant 2015, 8, 1304–1320. [Google Scholar] [CrossRef] [Green Version]
- Banks, J.M. Continuous excitation chlorophyll fluorescence parameters: A review for practitioners. Tree Physiol. 2017, 37, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Stirbet, A.; Lazár, D.; Guo, Y.; Govindjee, G. Photosynthesis: Basics, history and modelling. Ann. Bot. 2020, 126, 511–537. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; D’Odorico, P.; Bhathena, Y.; Arain, M.A.; Ensminger, I. Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sens. Environ. 2019, 233, 111407. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Heskel, M.; Sun, S.; Tang, J. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Koller, S.; Holland, V.; Brueggemann, W. Seasonal monitoring of PSII functionality and relative chlorophyll content on a field site in two consecutive years: A case study of different oak species. Photosynthetica 2020, 58, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Pflug, E.E.; Buchmann, N.; Siegwolf, R.T.; Schaub, M.; Rigling, A.; Arend, M. Resilient leaf physiological response of European beech (Fagus sylvatica L.) to summer drought and drought release. Front. Plant Sci. 2018, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Moser, A.; Rahman, M.A.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Inter-and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. Int. J. Biometeorol. 2017, 61, 1095–1107. [Google Scholar] [CrossRef]
- Gillner, S.; Korn, S.; Hofmann, M.; Roloff, A. Contrasting strategies for tree species to cope with heat and dry conditions at urban sites. Urban Ecosyst. 2017, 20, 853–865. [Google Scholar] [CrossRef]
- Jarosińska, E.; Bodziony, M. Temporal and spatial rainfall variability in the urbanized area of Cracow. Acta Sci. Pol. Formatio. Circumiectus 2019, 18, 43–55. [Google Scholar] [CrossRef]
- Pigott, D. Lime-Trees and Basswoods. A Biological Monograph of the Genus Tilia; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Pauleit, S.; Jones, N.; Nyhuus, S.; Pirnat, J.; Salbitano, F. Urban Forest Resources in European Cities. In Urban Forests and Trees; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin, Germany, 2005. [Google Scholar]
- Zhang, C.; Stratópoulos, L.M.F.; Xu, C.; Pretzsch, H.; Rötzer, T. Development of Fine Root Biomass of Two Contrasting Urban Tree Cultivars in Response to Drought Stress. Forests 2020, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Brodzińska, B.; Czekierda, D.; Czernecki, B.; Dołęga, E.; Kowalik, A.; Krupa-Marchlewska, J.; Marcinkowski, M.; Mizera, M.; Moskwiński, T.; Nowak, B.; et al. Bulletin of the National Hydrological and Meteorological Service; Institute of Meteorology and Water Management National Research Institute: Warsaw, Poland, 2013; Volume 13, p. 15. (In Polish) [Google Scholar]
- Brodzińska, B.; Czekierda, D.; Dołęga, E.; Gabryelewicz, M.; Kowalik, A.; Mizera, M.; Pawelec, W.; Pietrzykowska, A.; Sawicka, M.; Strzelczak, A.; et al. Bulletin of the National Hydrological and Meteorological Service; Institute of Meteorology and Water Management National Research Institute: Warsaw, Poland, 2014; Volume 13, p. 15. (In Polish) [Google Scholar]
- Brodzińska, B.; Cebulak, E.; Czekierda, D.; Gabryelewicz, M.; Kowalewski, M.; Kowalik, A.; Nowak, D.; Pawelec, W.; Pietrzykowska, A.; Sawicka, M.; et al. Bulletin of the National Hydrological and Meteorological Service; Institute of Meteorology and Water Management National Research Institute: Warsaw, Poland, 2015; Volume 13, p. 14. (In Polish) [Google Scholar]
- Treder, W.; Klamkowski, K.; Wójcik, K. A new approach to the method of drawing the Gaussen–Walter climate diagram. Meteorol. Hydrol. Water Manag. 2018, 6, 3–9. [Google Scholar] [CrossRef]
- Łukasiewicz, S. A suggested modification of the method of drawing the wet ‘humid’ period in the Gaussen–Walter climate diagram. Bad. Fizjogr. Nad Pol. Zach. Ser. A Geogr. Fiz. 2006, 57, 95–99. (In Polish) [Google Scholar]
- Lichtenthaler, H.K.; Babani, F.; Navrátil, M.; Buschmann, C. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Photosynth. Res. 2013, 117, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Babani, F. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In Advances in Photosynthesis and Respiration. Chlorophyll a fluorescence. A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 713–736. [Google Scholar] [CrossRef]
- Govindjee, S.A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) andphotosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- D’Amato, R.; De Feudis, M.; Hasuoka, P.E.; Regni, L.; Pacheco, P.H.; Onofri, A.; Businelli, D.; Proietti, P. The selenium supplementation influences olive tree production and oil stability against oxidation and can alleviate the water deficiency effects. Front. Plant Sci. 2018, 9, 1191. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.H.P.J.C.; Harris, P.J. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Salvatori, E.; Fusaro, L.; Manes, F. Chlorophyll fluorescence for phenotyping drought-stressed trees in a mixed deciduous forest. Ann. Bot. 2016, 6, 39–49. [Google Scholar] [CrossRef]
- Banks, J.M. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ. Exp. Bot. 2018, 155, 118–127. [Google Scholar] [CrossRef]
- Munné-Bosch, S. Senescence: Is it universal or not? Trends Plant Sci. 2015, 20, 713–720. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M. Leaf pigment content. Compr. Remote Sens. Ref. Modul. Earth Syst. Environ. Sci. 2017, 3, 117–142. [Google Scholar] [CrossRef]
- Primka, E.J.; Smith, W.K. Synchrony in fall leaf drop: Chlorophyll degradation, color change, and abscission layer formation in three temperate deciduous tree species. Am. J. Bot. 2019, 106, 377–388. [Google Scholar] [CrossRef]
- Mattila, H.; Valev, D.; Havurinne, V.; Khorobrykh, S.; Virtanen, O.; Antinluoma, M.; Mishra, K.B.; Tyystjärvi, E. Degradation of chlorophyll and synthesis of flavonols during autumn senescence—The story told by individual leaves. Aob. Plants 2018, 10, ply028. [Google Scholar] [CrossRef]
- Ciupak, A.; Dziwulska-Hunek, A.; Gładyszewska, B.; Kwaśniewska, A. The relationship between physiological and mechanical properties of Acer platanoides L. and Tilia cordata Mill. leaves and their seasonal senescence. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Lepeduš, H.; Jurković, V.; Štolfa, I.; Ćurković-Perica, M.; Fulgosi, H.; Cesar, V. Changes in photosystem II photochemistry in senescing maple leaves. Croatica Chem. Acta 2010, 83, 379–386. [Google Scholar]
- Kalaji, H.M.; Račková, L.; Paganová, V.; Swoczyna, T.; Rusinowski, S.; Sitko, K. Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ. Exp. Bot. 2018, 152, 149–157. [Google Scholar] [CrossRef]
- Moy, A.; Le, S.; Verhoeven, A. Different strategies for photoprotection during autumn senescence in maple and oak. Physiol. Plant. 2015, 155, 205–216. [Google Scholar] [CrossRef]
- Selig, M.; Bohne, H. Drought stress reactions of different populations of Quercus robur L. and Tilia cordata Mill. J. Environ. Hortic. 2017, 35, 6–12. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2019, 58, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, H.M.; Rastogi, A.; Živčák, M.; Brestic, M.; Daszkowska-Golec, A.; Sitko, K.; Alsharafa, K.Y.; Lotfi, R.; Stypiński, P.; Samborska, I.A.; et al. Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. Photosynthetica 2018, 56, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Junker, L.V.; Ensminger, I. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves. Tree Physiol. 2016, 36, 694–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.Y.; Woo, S.Y.; Kwak, M.J.; Inkyin, K.; Lee, K.E.; Jang, J.H.; Kim, I.R. Photosynthesis and chlorophyll fluorescence responses of Populus sibirica to water deficit in a desertification area in Mongolia. Photosynthetica 2016, 54, 317–320. [Google Scholar] [CrossRef]
- Meng, L.L.; Song, J.F.; Wen, J.; Zhang, J.; Wei, J.H. Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica 2016, 54, 414–421. [Google Scholar] [CrossRef]
- Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 2002, 40, 13–29. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Qiang, S.; Goltsev, V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta 2010, 1797, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.Y. Neural networks and cluster analysis for unsupervised classification of cultivated species of Tilia (Malvaceae). Bot. J. Linn. Soc. 2009, 159, 300–314. [Google Scholar] [CrossRef]
- Basu, S.; Ramegowda, V.; Kumar, A.; Pereira, A. Plant adaptation to drought stress. F1000Research 2016, 5, Faculty Rev-1554. [Google Scholar] [CrossRef] [PubMed]
- Swoczyna, T.; Kalaji, H.M.; Pietkiewicz, S.; Borowski, J. Ability of various tree species to acclimation in urban environments probed with the JIP-test. Urban For. Urban Green. 2015, 14, 544–553. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czaja, M.; Kołton, A.; Muras, P. Delayed Inhibition of Photosynthetic Performance—Three Linden Species in an Urban Environment. Forests 2021, 12, 761. https://doi.org/10.3390/f12060761
Czaja M, Kołton A, Muras P. Delayed Inhibition of Photosynthetic Performance—Three Linden Species in an Urban Environment. Forests. 2021; 12(6):761. https://doi.org/10.3390/f12060761
Chicago/Turabian StyleCzaja, Monika, Anna Kołton, and Piotr Muras. 2021. "Delayed Inhibition of Photosynthetic Performance—Three Linden Species in an Urban Environment" Forests 12, no. 6: 761. https://doi.org/10.3390/f12060761
APA StyleCzaja, M., Kołton, A., & Muras, P. (2021). Delayed Inhibition of Photosynthetic Performance—Three Linden Species in an Urban Environment. Forests, 12(6), 761. https://doi.org/10.3390/f12060761