Effect of Microstructures on the Shear Strength of Larix kaempferi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Shear Strength
2.3. Failure Mode
2.4. Determination of the Density
2.4.1. Determination of the Average Density of the Samples
2.4.2. Determination of the Density of Earlywood and Latewood
2.5. Microstructure Analysis of Earlywood and Latewood
2.5.1. Cell Wall Thickness Measurement
2.5.2. Crystallinity Measurement
2.5.3. MFA Determination
3. Results
3.1. Shear Test Results
3.1.1. Shear Strength
3.1.2. Failure Mode
3.1.3. Microscopic Analysis of the Failure Location
3.2. Microstructure and Density of the Cell Wall of Earlywood and Latewood in L. kaempferi
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, C.S.X. Larch genetic improvement and its future development in China. World For. Res. 2008, 21, 58–63. [Google Scholar]
- Bei, Z. A brief introduction to the woods of five genera in the Pinaceae. China Timber 2016, 6, 27–31. [Google Scholar]
- Xinting, X.; Sainan, Z.; Chuan, Z. Study on the mainly wood physical and mechanical properties of import lumber of Larix Kaempferi Carr. Wood Process. Mach. 2017, 28, 6–13. [Google Scholar]
- Li, M.; Zhang, S.; Gong, Y.; Tian, Z.; Ren, H. Gluing Techniques on Bond Performance and Mechanical Properties of Cross-Laminated Timber (CLT) Made from Larix kaempferi. Polymers 2021, 13, 733. [Google Scholar] [CrossRef]
- Diao, S.; Hou, Y.; Xie, Y.; Sun, X. Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genet. 2016, 17, 104. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, A.; Kitagawa, M.; Hirai, T. Effects of growth ring parameters on mechanical properties of Japanese larch (Larix kaempferi) from various provenances. Eurasian J. For. Res. 2005, 8, 85–90. [Google Scholar]
- Ishikura, Y.; Matsumoto, K.; Ohashi, Y. Radial variation in partial compression properties perpendicular to the grain of Japanese larch (Larix kaempferi). J. Wood Sci. 2012, 58, 399–407. [Google Scholar] [CrossRef]
- Zhu, J.; Nakano, T.; Hirakawa, Y. Effect of growth on wood properties for Japanese larch (Larix kaempferi) Differences of annual ring structure between corewood and outerwood. Jpn. Wood Res. Soc. 1998, 44, 392–396. [Google Scholar] [CrossRef]
- Takimoto, H.; Yasue, K.; Tokumoto, M.; Takeda, T.; Nakano, T. Within Annual Ring and Pith-to-bark Variations of the Microfibril Angle in the S2 Layer of Tracheid Walls in 106 year old Plantation of Japanese Larch. MOKUZAI GAKKAISHI 2013, 59, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Zhongfeng, Z.; Dan, Z.; Guojing, H.; Jianong, C. Experimental research on fatigue behavior of larch glulam beams. J. Build. Struct. 2016, 37, 27–35. [Google Scholar]
- Luostarinen, K.; Heräjärvi, H. Relationship between anatomy and shear strength in wood of Larix sibirica. Holzforschung 2018, 72, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Ehrhart, T.; Brandner, R. Rolling shear: Test configurations and properties of some European soft- and hardwood species. Eng. Struct. 2018, 172, 554–572. [Google Scholar] [CrossRef]
- Gong, Y.C.; Xu, J.H.; Wu, G.F. Interlamination Shear Properties of Cross-laminated Timber Made from Domestic Japanese Larch in China. China Wood Ind. 2018, 32, 6–9. [Google Scholar]
- Ke-Fu, W. New Type Connection of Wood Frame and Their Influence to the Performace of Structures. Master’s Thesis, Southeast University, Nanjing, China, 2014. [Google Scholar]
- Grekin, M.; Surini, T. Shear strength and perpendicular-to-grain tensile strength of defect-free Scots pine wood from mature stands in Finland and Sweden. Wood Sci. Technol. 2007, 42, 75–91. [Google Scholar] [CrossRef]
- Jeong, G.Y.; Park, M.J. Evaluate orthotropic properties of wood using digital image correlation. Constr. Build. Mater. 2016, 113, 864–869. [Google Scholar] [CrossRef]
- Büyüksarı, Ü.; As, N.; Dündar, T. Mechanical Properties of Earlywood and Latewood Sectionsof Scots Pine Wood. Bioresources 2017, 12, 4004–4012. [Google Scholar]
- Luostarinen, K.; Heräjärvi, H. Dependence of shear strength on wood properties in cultivated Larix sibirica. Wood Mater. Sci. Eng. 2011, 6, 177–184. [Google Scholar] [CrossRef]
- Müller, U.; Sretenovic, A.; Gindl, W.; Teischinger, A. Longitudinal shear properties of European larch wood related to cell-wall structure. Wood Fiber Sci. 2004, 36, 143–151. [Google Scholar]
- Luostarinen, K.; Heräjärvi, H. Relation of arabinogalactans to density, growth rate and shear strength in wood of cultivated Siberian larch. Eur. J. Wood Wood Prod. 2012, 71, 29–36. [Google Scholar] [CrossRef]
- Longui, E.L.; Pires, G.T.; Ballarin, A.W.; Machado, J.A.R. Shear strength parallel to grain with distinct ray orientation on four Brazilian wood species. Eur. J. Wood Wood Prod. 2016, 75, 663–665. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, T.; Yamamoto, H.; Tsuchikawa, S. Estimation of Wood Stiffness and Strength Properties of Hybrid Larch by Near-Infrared Spectroscopy. Appl. Spectrosc. 2007, 61, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Ning, R. The Research on the Influence of Wood Microstructure to Fracture. Master’s Thesis, Northeast Forestry University, Harbin, China, 2007. [Google Scholar]
- Cuizhi, G.; Yixing, L.; Yongzhi, C.; Haipeng, Y.; Ning, R. Detection of the Process of Wood Fracture In-Situ Test by Environmental Scanning Electron Microscope. J. Northeast. For. Univ. 2007, 35, 7–9. [Google Scholar]
- Bodner, J.; Schlag, M.G.; Grüll, G. Fracture Initiation and Progress in Wood Specimens Stressed in Tension. Part I. Clear Wood Specimens Stressed Parallel to the Grain. Holzforschung 1997, 51, 479–484. [Google Scholar] [CrossRef]
- Bodner, J.; Schlag, M.G.; Grüll, G. Fracture Initiation and Progress in Wood Specimens Stressed in Tension. Part II. Compression Wood Specimens Stressed Parallel to the Grain. Holzforschung 1997, 51, 571–576. [Google Scholar] [CrossRef]
- Bodner, J.; Schlag, M.G.; Grüll, G. Fracture Initiation and Progress in Wood Specimens Stressed in Tension. Part III. Clear Wood Specimens with Various Slopes of Grain. Holzforschung 1998, 52, 95–101. [Google Scholar] [CrossRef]
- Mott, L. Micromechanical Properties and Fracture Mechanisms of Single Wood Pulp Fibers. Master’s Thesis, University of Maine, Orono, ME, USA, 1995. [Google Scholar]
- Beijing SPoC. GBT 1933–2009 Method for Determination of the Density of Wood; Standardization Administraton of China and General Administration of Quality Supervision, Inspection and Quarantine of the People’s: Beijing, China, 2009. [Google Scholar]
- Andersson, S.; Serimaa, R.; Paakkari, T.; Saranp, Ä.Ä.P.; Pesonen, E. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 2003, 49, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Cave, I.D. Theory_of_X-ray_measurement_of_microfibril_angle_in_wood. Wood Sci. Technol. 1997, 31, 9. [Google Scholar]
- Seppo Andersson, R.S.; Torkkeli, M.; Paakkari, T.; Saranpfifi, P.; Pesonen, E. Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: Comparison of measurin. J. Wood Sci. 2000, 46, 343–349. [Google Scholar] [CrossRef]
- Shunxing, M. Studies on Genetic Variation and Early Selection of Japanese Larch Clones. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2006. [Google Scholar]
- Wolfgang Gindl, A.T. Comparison of the TL-Shear Strength of Normal and Compression Wood of European Larch. Holzforschung 2003, 57, 421–426. [Google Scholar] [CrossRef]
- Stanzl-Tschegg, S.E. Microstructure and fracture mechanical response of wood. Int. J. Fract. 2006, 139, 495–508. [Google Scholar] [CrossRef]
- Qing, H.; Mishnaevsky, L. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mech. Mater. 2009, 41, 1034–1049. [Google Scholar] [CrossRef]
- Zink, A.G.; Pellicane, P.J.; Shuler, C.E. Ultrastructural analysis of softwood fracture surfaces. Wood Sci. Technol. 1994, 28, 329–338. [Google Scholar] [CrossRef]
Indexes | Shear Strength | Density | Number of Rings | Width of the Ring |
---|---|---|---|---|
Shear strength | 1 | |||
Density | 0.51 | 1 | ||
Number of rings | 0.29 | 0.71 | 1 | |
Width of the ring | −0.015 | −0.615 | −0.734 | 1 |
Indexes | Density (g/cm3) | Crystallinity (%) | MFA (°) | Cell Wall Thickness (μm) |
---|---|---|---|---|
Early wood | 0.39 | 43.97 ± 0.06 | 25.40 ± 0.11 | 6.36 ± 0.25 |
Late wood | 0.78 | 42.79 ± 0.03 | 17.60 ± 2.01 | 12.37 ± 0.95 |
p-value | 2.08 × 10−8 | 0.15 | 0.0001 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, S.; Wang, Y.; Ren, H. Effect of Microstructures on the Shear Strength of Larix kaempferi. Forests 2021, 12, 830. https://doi.org/10.3390/f12070830
Li M, Zhang S, Wang Y, Ren H. Effect of Microstructures on the Shear Strength of Larix kaempferi. Forests. 2021; 12(7):830. https://doi.org/10.3390/f12070830
Chicago/Turabian StyleLi, Mingyue, Shuangbao Zhang, Yurong Wang, and Haiqing Ren. 2021. "Effect of Microstructures on the Shear Strength of Larix kaempferi" Forests 12, no. 7: 830. https://doi.org/10.3390/f12070830
APA StyleLi, M., Zhang, S., Wang, Y., & Ren, H. (2021). Effect of Microstructures on the Shear Strength of Larix kaempferi. Forests, 12(7), 830. https://doi.org/10.3390/f12070830