Defence Is a Priority in Female Juveniles and Adults of Taxus baccata L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. Field Study
2.1.2. Pot Experiment
2.2. Experiment Design
2.2.1. Field Study
2.2.2. Pot Experiment
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results
3.1. Fertilization and Needle Age
3.2. Sex
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renner, S.S.; Ricklefs, R.E. Dioecy and its correlates in the flowering plants. Am. J. Bot. 1995, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Weiblen, G.D.; Oyama, R.K.; Donoghue, M.J. Phylogenetic analysis of dioecy in monocotyledons. Am. Nat. 2000, 155, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Renner, S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014, 101, 1588–1596. [Google Scholar] [CrossRef] [Green Version]
- Walas, Ł.; Mandryk, W.; Thomas, P.A.; Tyrała-Wierucka, Ż.; Iszkuło, G. Sexual systems in gymnosperms: A Review. Basic Appl. Ecol. 2018, 31, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Randriamanana, T.R.; Nybakken, L.; Lavola, A.; Aphalo, P.J.; Nissinen, K.; Julkunen-Tiitto, R. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories. Tree Physiol. 2014, 34, 471–487. [Google Scholar] [CrossRef]
- Geber, M.A. Theories of the evolution of sexual dimorphism. In Gender and Sexual Dimorphism in Flowering Plants; Geber, P.D.M.A., Dawson, P.D.T.E., Delph, P.D.L.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 97–122. [Google Scholar]
- Levins, R. Evolution in Changing Environments: Some Theoretical Explorations; (MPB-2); Princeton University Press: Princeton, NJ, USA, 1968; ISBN 978-0-691-07959-2. [Google Scholar]
- Obeso, J.R. The Costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef]
- Dawson, T.E.; Geber, M.A. Sexual dimorphism in physiology and morphology. In Gender and Sexual Dimorphism in Flowering Plants; Geber, P.D.M.A., Dawson, P.D.T.E., Delph, P.D.L.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 175–215. [Google Scholar]
- Case, A.L.; Ashman, T.-L. 5-Sex-specific physiology and its implications for the cost of reproduction. In Reproductive Allocation in Plants; Physiological Ecology; Reekie, E.G., Bazzaz, F.A., Eds.; Academic Press: Burlington, ON, Canada, 2005; pp. 129–157. [Google Scholar]
- Álvarez-Cansino, L.; Zunzunegui, M.; Díaz Barradas, M.C.; Esquivias, M.P. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Ann. Bot. 2010, 106, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.G.; Webb, C.J. Secondary sex characters in plants. Bot. Rev. 1977, 43, 177–216. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Z.; Guo, Q.; Xia, Z. Sex-Specific interactions affect foliar defense compound accumulation and resistance to herbivores in Populus cathayana. Sci. Total Environ. 2021, 774, 145819. [Google Scholar] [CrossRef]
- Purrington, C.B.; Schmitt, J. Sexual dimorphism of dormancy and survivorship in buried seeds of Silene latifolia. J. Ecol. 1995, 83, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Delph, L.F.; Meagher, T.R. Sexual dimorphism masks life history trade-offs in the dioecious plant Silene latifolia. Ecology 1995, 76, 775–785. [Google Scholar] [CrossRef]
- Nicotra, A.B. Sexually dimorphic growth in the dioecious tropical shrub, Siparuna grandiflora. Funct. Ecol. 1999, 13, 322–331. [Google Scholar] [CrossRef]
- Cipollini, M.L.; Dingley, N.R.; Felch, P.; Bailey, N.J.; Moss, J.P.; Gaskin, M.G.; Williams, S. Does sex ratio bias and sexual dimorphism occur in Lindera benzoin L. (Lauraceae) prior to fruit Production? J. Torrey Bot. Soc. 2020, 147, 272–280. [Google Scholar] [CrossRef]
- Retuerto, R.; Sánchez Vilas, J.; Varga, S. Sexual dimorphism in response to stress. Environ. Exp. Bot. 2018, 146, 1–4. [Google Scholar] [CrossRef]
- Li, Z.; Wu, N.; Liu, T.; Tang, M.; Chen, H. Gender-related responses of dioecious plant Populus cathayana to AMF, drought and planting pattern. Sci. Rep. 2020, 10, 11530. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.E.; Ehleringer, J.R. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo. Ecology 1993, 74, 798–815. [Google Scholar] [CrossRef]
- Chen, L.; Dong, T.; Duan, B. Sex-specific carbon and nitrogen partitioning under N deposition in Populus cathayana. Trees 2014, 28, 793–806. [Google Scholar] [CrossRef]
- Agren, J. Sexual differences in biomass and nutrient allocation in the dioecious Rubus chamaemorus. Ecology 1988, 69, 962. [Google Scholar] [CrossRef]
- Seger, J.; Eckhart, V.M. Evolution of sexual systems and sex allocation in plants when growth and reproduction overlap. Proc. R. Soc. B Biol. Sci. 1996, 263, 833–841. [Google Scholar] [CrossRef]
- Nowak-Dyjeta, K.; Giertych, M.J.; Thomas, P.; Iszkuło, G. Males and females of Juniperus communis L. and Taxus baccata L. show different seasonal patterns of nitrogen and carbon content in needles. Acta Physiol. Plant. 2017, 39, 191. [Google Scholar] [CrossRef] [Green Version]
- Cedro, A.; Iszkulo, G. Do females differ from males of European yew (Taxus baccata L.) in dendrochronological analysis? Tree Ring Res. 2011, 67, 3–11. [Google Scholar] [CrossRef]
- Iszkuło, G.; Jasińska, A.K.; Giertych, M.J.; Boratyński, A. Do secondary sexual dimorphism and female intolerance to drought influence the sex ratio and extinction risk of Taxus baccata? Plant Ecol. 2009, 200, 229–240. [Google Scholar] [CrossRef]
- Vessella, F.; Salis, A.; Scirè, M.; Piovesan, G.; Schirone, B. Natural regeneration and gender-specific spatial pattern of Taxus baccata in an old-growth population in Foresta Umbra (Italy). Dendrobiology 2015, 73, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Robakowski, P.; Pers-Kamczyc, E.; Ratajczak, E.; Thomas, P.A.; Ye, Z.-P.; Rabska, M.; Iszkuło, G. Photochemistry and antioxidative capacity of female and male Taxus baccata L. acclimated to different nutritional environments. Front. Plant Sci. 2018, 9, 742. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, M.S. Rejuvenation of Forest Trees. In Hormonal Control of Tree Growth: Proceedings of the Physiology Working Group Technical Session, Society of American Foresters National Convention, Birmingham, AL, USA, 6–9 October 1986; Forestry Sciences; Kossuth, S.V., Ross, S.D., Eds.; Springer: Dordrecht, The Netherlands, 1987; pp. 1–12. ISBN 978-94-017-1793-9. [Google Scholar]
- Klimeš, L.; Klimešová, J.; Hendriks, R.; van Groenendael, J. Clonal plant architecture: A comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants; de Kroon, H., van Groenendael, H., Eds.; Backhuys: Leiden, The Netherlands, 1997; pp. 1–29. [Google Scholar]
- Åhman, I. Growth, Herbivory and disease in relation to gender in Salix viminalis L. Oecologia 1997, 111, 61–68. [Google Scholar] [CrossRef]
- Nybakken, L.; Hörkkä, R.; Julkunen-Tiitto, R. Combined enhancements of temperature and UVB influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia. Physiol. Plant. 2012, 145, 551–564. [Google Scholar] [CrossRef]
- Konatowska, M.; Rutkowski, P.; Budka, A.; Goliński, P.; Szentner, K.; Mleczek, M. The interactions between habitat, sex, biomass and leaf traits of different Willow (Salix) Genotypes. Int. J. Environ. Res. 2021, 15, 395–412. [Google Scholar] [CrossRef]
- Påhlsson, A.-M.B. Influence of aluminium on biomass, nutrients, soluble carbohydrates and phenols in beech (Fagus sylvatica). Physiol. Plant. 1990, 78, 79–84. [Google Scholar] [CrossRef]
- Veteli, T.O.; Mattson, W.J.; Niemelä, P.; Julkunen-Tiitto, R.; Kellomäki, S.; Kuokkanen, K.; Lavola, A. Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees? J. Chem. Ecol. 2007, 33, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Messier, C.; Puttonen, P. Spatial and temporal variation in the bight bnvironment of developing scots pine stands: The Basis for a quick and efficient method of characterizing bight. Can. J. For. Res. 1995, 25, 343–354. [Google Scholar] [CrossRef]
- Nowak, K.; Giertych, M.J.; Pers-Kamczyc, E.; Thomas, P.A.; Iszkuło, G. Rich but not poor conditions determine sex-specific differences in growth rate of juvenile dioecious plants. J. Plant Res. 2021, 33, 287–296. [Google Scholar]
- Haissig, B.E.; Dickson, R.E. Starch measurement in plant tissue using enzymatic hydrolysis. Physiol. Plant. 1979, 47, 151–157. [Google Scholar] [CrossRef]
- Hansen, J.; Møller, I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef]
- Johnson, G.; Schaal, L.A. Accumulation of phenolic substances and ascorbic acid in potato tuber tissue upon injury and their possible role in disease resistance. Am. Potato J. 1957, 34, 200–209. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Montesinos, D.; Villar-Salvador, P.; García-Fayos, P.; Verdú, M. Genders in Juniperus thurifera have different functional responses to variations in nutrient availability. New Phytol. 2012, 193, 705–712. [Google Scholar] [CrossRef]
- Choudhry, N.; Singh, S.; Siddiqui, M.B.; Khatoon, S. Impact of seasons and dioecy on therapeutic phytoconstituents of Tinospora cordifolia, a Rasayana drug. BioMed Res. Int. 2014, 2014, e902138. [Google Scholar] [CrossRef]
- Rabska, M.; Pers-Kamczyc, E.; Żytkowiak, R.; Adamczyk, D.; Iszkuło, G. Sexual dimorphism in the chemical composition of male and female in the dioecious tree, Juniperus communis L., growing under different nutritional conditions. Int. J. Mol. Sci. 2020, 16, 8094. [Google Scholar] [CrossRef]
- Rabska, M.; Warwick, N.W.M.; Iszkuło, G.; Gross, C.L. Intersexual differences in leaf size and shape in dioecious Adriana tomentosa (Euphorbiaceae). J. Plant Ecol. 2021, 14, 67–83. [Google Scholar] [CrossRef]
- Rabie, A.L.; Wells, J.D.; Dent, L.K. The nitrogen content of pollen protein. J. Apic. Res. 1983, 22, 119–123. [Google Scholar] [CrossRef]
- Wallace, C.S.; Rundel, P.W. Sexual dimorphism and resource allocation in male and female shrubs of Simmondsia chinensis. Oecologia 1979, 44, 34–39. [Google Scholar] [CrossRef]
- Blake-Mahmud, J.; Struwe, L. When the going gets tough, the tough turn female: Injury and sex expression in a sex-changing tree. Am. J. Bot. 2020, 107, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Elmqvist, T.; Cates, R.G.; Harper, J.K.; Gardfjell, H. Flowering in males and females of a Utah willow, Salix rigida and effects on growth, tannins, phenolic glycosides and sugars. Oikos 1991, 61, 65–72. [Google Scholar] [CrossRef]
- Randriamanana, T.R.; Nissinen, K.; Moilanen, J.; Nybakken, L.; Julkunen-Tiitto, R. Long-term UV-B and temperature enhancements suggest that females of Salix myrsinifolia plants are more tolerant to UV-B than males. Environ. Exp. Bot. 2015, 109, 296–305. [Google Scholar] [CrossRef]
- Miljković, D.; Selaković, S.; Vujić, V.; Stanisavljević, N.; Radović, S.; Cvetković, D. Patterns of herbivore damage, developmental stability, moisrphological and biochemcal traits in female and male Mercurialis perennis in contrasting light habitats. Alp. Bot. 2018, 128, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Vitasse, Y.; Lenz, A.; Hoch, G.; Körner, C. Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J. Ecol. 2014, 102, 981–988. [Google Scholar] [CrossRef]
- Nybakken, L.; Julkunen-Tiitto, R. Gender differences in Salix myrsinifolia at the pre-reproductive stage are little affected by simulated climatic change. Physiol. Plant. 2013, 147, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, H.; Zhao, H.; Korpelainen, H.; Li, C. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies. Tree Physiol. 2014, 34, 343–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Shi, D.; Wei, X.; Hu, Y.; Wang, T.; Xie, Y. Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba. Acta Physiol. Plant. 2016, 38, 124. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, K.; Giertych, M.J.; Pers-Kamczyc, E.; Thomas, P.A.; Iszkuło, G. Defence Is a Priority in Female Juveniles and Adults of Taxus baccata L. Forests 2021, 12, 844. https://doi.org/10.3390/f12070844
Nowak K, Giertych MJ, Pers-Kamczyc E, Thomas PA, Iszkuło G. Defence Is a Priority in Female Juveniles and Adults of Taxus baccata L. Forests. 2021; 12(7):844. https://doi.org/10.3390/f12070844
Chicago/Turabian StyleNowak, Kinga, Marian J. Giertych, Emilia Pers-Kamczyc, Peter A. Thomas, and Grzegorz Iszkuło. 2021. "Defence Is a Priority in Female Juveniles and Adults of Taxus baccata L." Forests 12, no. 7: 844. https://doi.org/10.3390/f12070844
APA StyleNowak, K., Giertych, M. J., Pers-Kamczyc, E., Thomas, P. A., & Iszkuło, G. (2021). Defence Is a Priority in Female Juveniles and Adults of Taxus baccata L. Forests, 12(7), 844. https://doi.org/10.3390/f12070844