The Variation in the Stoichiometric Characteristics of the Leaves and Roots of Karst Shrubs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Field Survey
2.3. Measurement of Plant C, N, and P Concentrations
2.4. Statistical Analysis
3. Results
3.1. Summary of the Stoichiometry Data of the Shrub and the Soil
3.2. The Correlations in the Stoichiometry of the Shrub Leaves and Roots
3.3. Factors Affecting the Stoichiometry in the Karst Shrub
4. Discussion
4.1. Distribution Patterns and Synergies of the Phytochemical Elements
4.2. Stoichiometric Characteristics of the Karst Shrub Species
4.3. Stoichiometry of the Karst Plant and its Soil Characteristics
4.4. Plant Stoichiometry and Karst Vegetation Restoration
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Family | Genus | Live Form |
---|---|---|---|
Pittosporum glabratum Lindl. | Pittosporaceae | Pittosporum | Evergreen |
Vitex negundo L. | Lamiaceae | Vitex | Deciduous |
Alchornea trewioides (Benth.) Müll. Arg. | Euphorbiaceae | Alchornea | Deciduous |
Flemingia macrophylla (Willd.) Kuntze ex Prain | Fabaceae | Flemingia | Evergreen |
Maesa perlarius (Lour.) Merr. | Primulaceae | Maesa | Evergreen |
Zanthoxylum bungeanum Maxim. | Rutaceae | Zanthoxylum | Deciduous |
Itea chinensis Hook. & Arn. | Iteaceae | Itea | Evergreen |
Boehmeria nivea (L.) Gaudich. | Urticaceae | Boehmeria | Evergreen |
Indigofera kirilowii Maxim. ex Palib. | Fabaceae | Indigofera | Evergreen |
Cajanus cajan (L.) Huth | Fabaceae | Cajanus | Evergreen |
Zanthoxylum dissitum Hemsl. | Rutaceae | Zanthoxylum | Deciduous |
Alangium chinense (Lour.) Harms | Cornaceae | Alangium | Deciduous |
Pyracantha fortuneana (Maxim.) H. L. Li | Rosaceae | Pyracantha | Evergreen |
Maesa japonica (Thunb.) Moritzi & Zoll. | Primulaceae | Maesa | Evergreen |
Viburnum fordiae Hance | Adoxaceae | Viburnum | Evergreen |
Rhamnus utilis Decne. | Rhamnaceae | Rhamnus | Deciduous |
Rubus idaeus L. | Rosaceae | Rubus | Deciduous |
Glochidion hirsutum (Roxb.) Voigt | Phyllanthaceae | Glochidion | Evergreen |
Euchresta japonica Hook. f. ex Regel | Fabaceae | Euchresta | Evergreen |
Tirpitzia ovoidea Chun & F. C. How ex W. L. Sha | Linaceae | Tirpitzia | Evergreen |
Ligustrum lucidum W. T. Aiton | Oleaceae | Ligustrum | Evergreen |
Dodonaea viscosa Jacquem. | Sapindaceae | Dodonaea | Deciduous |
Sophora tonkinenisi Gagnep | Fabaceae | Sophora | Deciduous |
Site No. | Elevation(m) | Slope(º) | Slope Position | Slope Direction | Soil Depth (m) | Soil pH | Soil Organic Matter (g/kg) | TN (g/kg) | TP (g/kg) | TK (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 331.3 | 39 | M | E | 0.15 | 7.35 | 66.20 | 0.60 | 0.17 | 1.10 | 461.65 | 0.15 | 0.84 |
2 | 348.6 | 6 | M | E | 0.15 | 7.36 | 73.38 | 0.65 | 0.17 | 2.89 | 429.10 | 0.11 | 0.93 |
3 | 225.4 | 10 | L | E | 0.18 | 7.36 | 73.38 | 0.65 | 0.17 | 2.89 | 429.10 | 0.11 | 0.93 |
4 | 222.5 | 10 | L | E | 0.11 | 7.36 | 31.71 | 0.28 | 0.13 | 1.80 | 272.30 | 0.07 | 1.58 |
5 | 346.5 | 22 | M | E | 0.16 | 7.37 | 72.69 | 0.69 | 0.14 | 1.86 | 540.75 | 0.12 | 0.81 |
6 | 225.4 | 10 | L | E | 0.23 | 7.52 | 55.45 | 0.49 | 0.17 | 3.13 | 367.85 | 0.15 | 0.61 |
7 | 392.3 | 39 | L | SE | 0.15 | 7.37 | 33.18 | 0.51 | 0.25 | 2.16 | 433.30 | 0.19 | 1.66 |
8 | 274.9 | 3 | L | SE | 0.25 | 7.01 | 63.82 | 0.53 | 0.23 | 4.11 | 380.10 | 0.15 | 1.58 |
9 | 366.5 | 22 | M | SE | 0.08 | 7.26 | 31.00 | 0.29 | 0.24 | 3.67 | 233.80 | 0.17 | 1.87 |
10 | 348.6 | 6 | M | SE | 0.12 | 7.24 | 56.50 | 0.53 | 0.24 | 1.77 | 397.95 | 0.19 | 1.33 |
11 | 316.1 | 12 | M | S | 0.18 | 7.24 | 56.50 | 0.53 | 0.24 | 1.77 | 397.95 | 0.19 | 1.33 |
12 | 340.6 | 6 | M | E | 0.11 | 6.70 | 33.74 | 0.29 | 0.11 | 0.64 | 242.20 | 0.08 | 0.75 |
13 | 327.6 | 12 | L | E | 0.16 | 7.07 | 70.32 | 0.59 | 0.18 | 2.70 | 412.30 | 0.09 | 2.22 |
14 | 320.2 | 23 | L | E | 0.36 | 7.43 | 58.57 | 0.17 | 0.17 | 2.84 | 122.15 | 0.09 | 2.77 |
15 | 305.7 | 25 | L | E | 0.55 | 6.99 | 33.71 | 0.27 | 0.09 | 3.19 | 235.55 | 0.05 | 2.78 |
16 | 346.5 | 22 | M | S | 0.19 | 7.32 | 42.74 | 0.36 | 0.13 | 2.71 | 342.65 | 0.07 | 1.62 |
17 | 222.5 | 10 | L | S | 0.18 | 7.20 | 43.25 | 0.40 | 0.29 | 1.08 | 355.95 | 0.22 | 0.37 |
18 | 305.7 | 25 | L | E | 0.2 | 7.20 | 43.25 | 0.40 | 0.29 | 1.08 | 355.95 | 0.22 | 0.37 |
19 | 295.5 | 4 | L | SE | 0.17 | 6.70 | 13.12 | 0.17 | 0.12 | 2.43 | 109.90 | 0.11 | 1.48 |
20 | 340.5 | 6 | L | S | 0.19 | 6.79 | 35.39 | 0.24 | 0.21 | 1.45 | 227.15 | 0.14 | 1.22 |
21 | 339.7 | 4 | L | SE | 0.23 | 7.30 | 57.74 | 0.41 | 0.19 | 2.56 | 408.45 | 0.11 | 2.09 |
22 | 280.1 | 3 | L | W | 0.2 | 7.47 | 29.38 | 0.26 | 0.27 | 2.92 | 199.15 | 0.19 | 2.76 |
23 | 316.4 | 19 | M | S | 0.27 | 7.43 | 35.17 | 0.28 | 0.20 | 1.12 | 272.30 | 0.13 | 1.03 |
24 | 340.5 | 18 | M | SE | 0.09 | 7.21 | 61.13 | 0.48 | 0.19 | 3.37 | 461.30 | 0.14 | 1.37 |
25 | 350.5 | 18 | M | SE | 0.25 | 7.21 | 61.13 | 0.48 | 0.19 | 3.37 | 461.30 | 0.14 | 1.37 |
26 | 360.5 | 18 | M | SE | 0.27 | 7.21 | 61.13 | 0.48 | 0.19 | 3.37 | 461.30 | 0.14 | 1.37 |
27 | 310.7 | 6 | L | S | 0.19 | 7.43 | 36.10 | 0.27 | 0.12 | 1.40 | 247.80 | 0.14 | 2.84 |
28 | 380.9 | 6 | L | S | 0.2 | 6.77 | 26.54 | 0.27 | 0.06 | 1.68 | 217.00 | 0.08 | 1.49 |
29 | 340.5 | 18 | M | SE | 0.27 | 7.19 | 47.95 | 0.49 | 0.16 | 3.45 | 337.75 | 0.07 | 2.79 |
30 | 316.4 | 19 | M | S | 0.29 | 7.19 | 47.95 | 0.49 | 0.16 | 3.45 | 337.75 | 0.07 | 2.79 |
PC | Eigenvalue | Percentage | Cunmlative Percentage | LeafC | LeafN | LeafP | RootC | RootN | RootP | LeafC:N | LeafC:P | LeafN:P | RootC:N | RootC:P | RootN:P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.89 | 40.73 | 40.73 | 0.23 | −0.88 | −0.71 | 0.03 | −0.81 | −0.47 | 0.93 | 0.81 | −0.06 | 0.82 | 0.56 | −0.44 |
2 | 2.30 | 19.14 | 59.87 | 0.23 | 0.20 | −0.31 | 0.20 | 0.35 | −0.57 | −0.01 | 0.27 | 0.76 | −0.20 | 0.50 | 0.83 |
3 | 1.93 | 16.05 | 75.92 | 0.00 | 0.23 | 0.49 | 0.34 | −0.36 | −0.57 | −0.22 | −0.46 | −0.55 | 0.33 | 0.60 | 0.17 |
4 | 1.22 | 10.19 | 86.11 | 0.73 | 0.19 | 0.28 | −0.74 | −0.06 | −0.12 | 0.06 | 0.09 | −0.07 | −0.01 | −0.01 | 0.02 |
5 | 0.75 | 6.27 | 92.38 | 0.59 | −0.04 | −0.04 | 0.54 | 0.03 | 0.21 | 0.03 | −0.01 | −0.12 | −0.19 | 0.00 | −0.10 |
6 | 0.42 | 3.52 | 95.90 | −0.09 | −0.24 | 0.16 | −0.05 | 0.21 | 0.05 | 0.25 | 0.11 | −0.31 | −0.21 | 0.10 | 0.24 |
7 | 0.20 | 1.68 | 97.58 | 0.03 | 0.07 | −0.07 | −0.04 | 0.16 | 0.23 | 0.06 | −0.09 | −0.01 | 0.27 | 0.14 | 0.07 |
8 | 0.15 | 1.23 | 98.80 | −0.03 | 0.13 | 0.21 | 0.10 | 0.08 | −0.03 | 0.11 | 0.18 | 0.05 | 0.11 | −0.07 | −0.06 |
9 | 0.09 | 0.77 | 99.57 | −0.04 | 0.05 | 0.06 | −0.02 | −0.09 | 0.13 | −0.02 | 0.07 | 0.06 | −0.10 | 0.19 | −0.07 |
10 | 0.03 | 0.23 | 99.80 | 0.00 | −0.01 | 0.03 | 0.01 | −0.09 | 0.06 | −0.01 | 0.03 | 0.01 | 0.03 | −0.05 | 0.10 |
11 | 0.02 | 0.17 | 99.97 | 0.02 | −0.09 | 0.05 | 0.00 | 0.03 | 0.00 | −0.07 | 0.01 | 0.04 | 0.03 | 0.01 | −0.01 |
12 | 0.00 | 0.03 | 100.00 | 0.00 | −0.01 | 0.02 | 0.00 | −0.01 | 0.00 | 0.03 | −0.04 | 0.03 | −0.01 | 0.00 | 0.00 |
Leaf C | Leaf N | Leaf P | Root C | Root N | Root P | Leaf C:N | Leaf C:P | Leaf N:P | Root C:N | Root C:P | Root N:P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | −0.080 | −0.161 | −0.117 | 0.188 | 0.211 | −0.071 | 0.158 | 0.118 | 0.050 | −0.030 | 0.115 | 0.194 |
TN | −0.098 | −0.302 * | −0.140 | 0.273 * | 0.020 | −0.090 | 0.252 | 0.136 | −0.137 | 0.072 | 0.174 | 0.024 |
TP | −0.185 | −0.035 | 0.177 | −0.234 | −0.085 | 0.169 | −0.040 | −0.167 | −0.320 * | 0.152 | −0.232 | −0.280 * |
AN | −0.105 | −0.288 * | −0.086 | 0.220 | 0.129 | −0.014 | 0.240 | 0.170 | −0.100 | −0.046 | 0.069 | 0.041 |
AP | −0.303 * | −0.438 ** | −0.269 | 0.210 | −0.245 | −0.150 | 0.300 * | 0.268 | −0.068 | 0.236 | 0.110 | −0.164 |
Soil C:N | 0.046 | 0.293 * | −0.028 | −0.161 | 0.384 ** | −0.026 | −0.188 | −0.021 | 0.471 ** | −0.228 | −0.076 | 0.447 ** |
Soil C:P | 0.023 | −0.083 | −0.264 | 0.283 * | 0.242 | −0.235 | 0.147 | 0.210 | 0.346 * | −0.083 | 0.250 | 0.421 ** |
Soil N:P | −0.004 | −0.310 * | −0.279 * | 0.409 ** | −0.015 | −0.245 | 0.298 * | 0.247 | 0.045 | 0.068 | 0.326 * | 0.145 |
References
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; pp. 1–20. [Google Scholar]
- Ågren, G.I. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. 2008, 39, 153–170. [Google Scholar] [CrossRef]
- He, J.S.; Fang, J.Y.; Wang, Z.H.; Guo, D.L.; Flynn, D.F.B.; Geng, Z. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 2006, 149, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, Y.; Wang, N.; Wang, G.X. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review. Chin. J. Plant Ecol. 2012, 36, 1205–1216. [Google Scholar] [CrossRef]
- Andersen, T.; Elser, J.J.; Hessen, D.O. Stoichiometry and population dynamics. Ecol. Lett. 2004, 7, 884–900. [Google Scholar] [CrossRef]
- Niklas, K.J.; Owens, T.; Reich, P.B.; Cobb, E.D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 2005, 8, 636–642. [Google Scholar] [CrossRef]
- He, J.S.; Wang, L.; Flynn, D.F.B.; Wang, X.P.; Ma, W.H.; Fang, J.Y. Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland Biomes. Oecologia 2008, 155, 301–310. [Google Scholar] [CrossRef]
- Hillebrand, H.; Borer, E.T.; Bracken, M.E.S.; Cardinale, B.J.; Cebrian, J.; Cleland, E.E.; Elser, J.J.; Gruner, D.S.; Harpole, W.S.; Ngai, J.T.; et al. Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecol. Lett. 2009, 12, 516–527. [Google Scholar] [CrossRef]
- Cease, A.J.; Elser, J.J.; Ford, C.F.; Hao, S.Q.; Kang, L.; Harrison, J.F. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 2012, 335, 467–469. [Google Scholar] [CrossRef] [PubMed]
- Fanin, N.; Fromin, N.; Buatois, B.; Hättenschwiler, S. An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecol. Lett. 2013, 16, 764–772. [Google Scholar] [CrossRef]
- Zhang, H.; Song, T.Q.; Wang, K.L.; Wang, G.X.; Liao, J.X.; Xu, G.H.; Zeng, F.P. Biogeographical patterns of biomass allocation vary with climate, soil and forest characteristics in China. Environ. Res. Lett. 2015, 10, 044014. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.P.; Law, R.M.; Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 2010, 7, 2261–2282. [Google Scholar] [CrossRef] [Green Version]
- Sims, L.; Pastor, J.; Lee, T.; Dewey, B. Nitrogen, phosphorus and light effects on growth and allocation of biomass and nutrients in wild rice. Oecologia 2012, 170, 65–76. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Y.; An, S. How C:N:P stoichiometry in soils and plants responds to succession in Robinia pseudoacacia forests on the Loess Plateau, China. For. Ecol. Manag. 2020, 475, 118394. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H.; Reich, P.B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat. Commun. 2011, 2, 344. [Google Scholar] [CrossRef] [Green Version]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant. Ecol. 2012, 14, 33–47. [Google Scholar] [CrossRef]
- Dı́az, S.; Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, K.L.; Zeng, Z.X.; Du, H.; Zou, Z.G.; Zeng, F.P. Large-scale patterns of forest’s growth rate are mainly driven by climate variables and stand characteristics. Forest Ecol. Manag. 2019, 435, 120–127. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Han, W.; Tang, L.; Tang, Z.; Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 2013, 36, 178–184. [Google Scholar] [CrossRef]
- Du, H.; Peng, W.X.; Song, T.Q.; Zeng, F.P.; Wang, K.L.; Song, M.; Zhang, H. Spatial pattern of woody plants and their environmental interpretation in the karst forest of southwest China. Plant Biosyst. 2015, 149, 121–130. [Google Scholar] [CrossRef]
- Du, H.; Hu, F.; Zeng, F.P.; Wang, K.L.; Peng, W.X.; Zhang, H.; Zeng, Z.X.; Zhang, F.; Song, T.Q. Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in southwest China. Sci. Rep. 2017, 7, 15664. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.X.; Wang, K.L.; Liu, X.L.; Zeng, F.P.; Song, T.Q.; Peng, W.X.; Zhang, H.; Du, H. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chin. J. Plant Ecol. 2015, 39, 682–693. [Google Scholar]
- Zou, Z.G.; Zeng, F.P.; Wang, K.L.; Zeng, Z.X.; Tang, H.; Zhang, H. Evaluation and tradeoff analysis of ecosystem service for typical land-use patterns in the karst region of Southwest China. Forests 2020, 11, 451. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zeng, F.P.; Zou, Z.G.; Zhang, Z.Q.; Li, Y.Z. Nitrogen uptake and transfer in soybean/maize intercropping in karst region, southwest China. Ecol. Evol. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.F.; Peng, W.X.; Song, T.Q.; Zeng, F.P.; Wang, K.L.; Wen, L.; Fan, F.J. Stoichiometric characteristics of plant and soil C, N, and P in different forest types in depressions between karst hills, southwest China. Chin. J. Appl. Ecol. 2014, 25, 947–954. [Google Scholar]
- Wu, P.; Cui, Y.C.; Zhao, W.J.; Hou, Y.J.; Zhu, J.; Ding, F.J.; Yang, W.B. Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature reserve, Guizhou, China. Acta Ecol. Sin. 2020, 40, 5063–5080. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; Agriculture Press of China: Beijing, China, 2000; p. 11. [Google Scholar]
- Zhang, Y.; Xu, X.; Li, Z.; Xu, C.; Luo, W. Improvements in soil quality with vegetation succession in subtropical China karst. Sci. Total Environ. 2021, 775, 145876. [Google Scholar] [CrossRef]
- Su, L.; Du, H.; Zeng, F.; Peng, W.; Rizwan, M.; Nunez-Delgado, A.; Zhou, Y.Y.; Song, T.Q.; Wang, H. Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a karst area, southwest China. J. Environ. Manag. 2019, 252, 109694. [Google Scholar] [CrossRef] [PubMed]
- Bazzaz, F.A.; Grace, J. Plant Resource Allocation; Academic Press: San Diego, CA, USA, 1997; p. 303. [Google Scholar]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Tessier, J.T.; Raynal, D.J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J. Appl. Ecol. 2003, 40, 523–534. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.C.; Falster, D.S.; Garnier, E.; Hikosaka, K.; Lamont, B.B.; Lee, W.; Oleksyn, J.; Osada, N.; et al. Assessing the generality of global leaf trait relationships. New Phytol. 2005, 166, 485–496. [Google Scholar] [CrossRef]
- Li, D.F.; Yu, S.L.; Wang, G.X.; Fang, W.W. Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau. Chin. J. Plant Ecol. 2015, 39, 453–465. [Google Scholar]
- Baldwin, D.S.; Rees, G.N.; Mitchell, A.M.; Watson, G.; Williams, J. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 2006, 26, 455–464. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Yan, L.B.; Pi, F.J.; Yu, L.F.; Yuan, C.J.; Shu, L.X. Stoichiometric characteristics and seasonal variation of soils and dominant plant leaves in secondary forest in karst area. J. South. Agric. 2019, 50, 90–96. [Google Scholar] [CrossRef]
- Cui, P.X.; Shen, Z.H.; Fu, P.L.; Bai, K.D.; Jiang, Y.J.; Cao, K.F. Comparison of foliar element contents of plants from natural forests with different substates in southern China. Acta Ecol. Sin. 2020, 40, 9148–9163. [Google Scholar] [CrossRef]
- Drenovsky, R.E.; Richards, J.H. Critical N:P values: Predicting nutrient deficiencies in desert shrublands. Plant Soil 2004, 259, 59–69. [Google Scholar] [CrossRef]
- Yan, E.R.; Wang, X.H.; Guo, M.; Zhong, Q.; Zhou, W. C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China. Chin. J. Plant Ecol. 2010, 34, 48–57. [Google Scholar]
- Hedin, L.O. Global organization of terrestrial plant-nutrient interactions. Proc. Natl. Acad. Sci. USA 2004, 101, 10849–10850. [Google Scholar] [CrossRef] [Green Version]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- McGroddy, M.E.; Daufresne, T.; Hedin, L.O. Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology 2004, 85, 2390–2401. [Google Scholar] [CrossRef]
- Ågren, G.I.; Weih, M. Plant stoichiometry at different scales: Element concentration patterns reflect environment more than genotype. New Phytol. 2012, 194, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Xu, W.T.; Xiong, G.M.; Wang, Y.; Zhao, C.M.; Lu, Z.J.; Li, Y.L.; Xie, Z.Q. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chin. J. Plant Ecol. 2017, 41, 31–42. [Google Scholar] [CrossRef] [Green Version]
Parameter (mg/g) | Leaf | Root | ||||
---|---|---|---|---|---|---|
Mean ± S.D 1 | Range | C.V 2 | Mean ± S.D | Range | C.V | |
Carbon | 445.66 ± 33.54 a3 | 386.99–514.38 | 7.53 | 436.03 ± 32.57 a | 268.71−480.04 | 7.47 |
Nitrogen | 20.94 ± 8.17 a | 9.20–41.09 | 39.04 | 8.41 ± 4.73 b | 2.59–22.28 | 56.28 |
Phosphorus | 1.25 ± 0.65 a | 0.44–3.54 | 51.60 | 0.67 ± 0.34 b | 0.23–1.71 | 50.55 |
Parameter (mg/g) | Leaf | Root | |||||
---|---|---|---|---|---|---|---|
Mean ± S.D 1 | Range | C.V 2 | Mean± S.D | Range | C.V | ||
C:N | 24.92 ± 10.61 a3 | 9.63–49.49 | 42.59 | 69.56 ± 38.22 b | 18.86–173.14 | 54.94 | |
C:P | 445.48 ± 222.77 a | 118.70–1148.39 | 50.01 | 830.79 ± 448.15 b | 257.39–2029.93 | 53.94 | |
N:P | 17.91 ± 4.57 a | 8.73–31.76 | 25.49 | 13.73 ± 6.91 b | 2.98–36.60 | 50.34 |
Parameter | Mean ± S.D 1 | Range | C.V 2 (%) |
Carbon (C, mg/g) | 47.46 ± 17.27 | 12.93–74.24 | 36.39 |
Nitrogen (N, mg/g) | 0.40 ± 0.16 | 0.16–0.74 | 40.32 |
Phosphorus (P, mg/g) | 0.15 ± 0.05 | 0.06–0.29 | 35.23 |
C:N | 124.63 ± 37.25 | 77.14–351.32 | 29.89 |
C:P | 344.29 ± 136.02 | 89.27–808.83 | 39.51 |
N:P | 2.84 ± 1.15 | 0.74–6.11 | 40.53 |
Variables | Leaf C | Leaf N | Leaf P | Root C | Root N | Root P | Leaf C:N | Leaf C:P | Leaf N:P | Root C:N | Root C:P |
---|---|---|---|---|---|---|---|---|---|---|---|
Leaf N | −0.022 | ||||||||||
Leaf P | −0.075 | 0.712 ** | |||||||||
Root C | −0.165 | −0.043 | −0.126 | ||||||||
Root N | −0.143 | 0.646 ** | 0.305 * | −0.015 | |||||||
Root P | −0.199 | 0.134 | 0.181 | −0.131 | 0.426 ** | ||||||
Leaf C:N | 0.251 | −0.895 ** | −0.694 ** | −0.084 | −0.603 ** | −0.283 * | |||||
Leaf C:P | 0.282 * | −0.748 ** | −0.792 ** | −0.132 | −0.381 ** | −0.295 * | 0.890 ** | ||||
Leaf N:P | 0.063 | 0.15 | −0.508 ** | −0.028 | 0.440 ** | −0.121 | −0.019 | 0.389 ** | |||
Root C:N | 0.05 | −0.603 ** | −0.383 ** | 0.009 | −0.840 ** | −0.457 ** | 0.655 ** | 0.417 ** | −0.297 * | ||
Root C:P | 0.22 | −0.268 | −0.256 | 0.302 * | −0.467 ** | −0.824 ** | 0.402 ** | 0.309 * | −0.011 | 0.546 ** | |
Root N:P | 0.028 | 0.539 ** | 0.17 | 0.132 | 0.628 ** | −0.360 ** | −0.399 ** | −0.199 | 0.486 ** | −0.480 ** | 0.293 * |
Variables | Leaf C | Leaf N | Leaf P | Root C | Root N | Root P | Leaf C:N | Leaf C:P | Leaf N:P | Root C:N | Root C:P | Root N:P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | 0.12 | 0.55 ** | 0.63 ** | 0.32 * | 0.18 | 0.13 | 0.44 ** | 0.44 ** | 0.2 | 0.22 | 0.09 | 0.33 ** |
T | 0.04 | 0.17 | 0.03 | 0.18 | 0.31 ** | 0.11 | 0.13 | 0.09 | 0.17 | 0.12 | 0.22 * | 0.19 |
SN | 0.2 | 0.07 | 0.09 | 0.26 * | 0.05 | 0.12 | 0.06 | 0.12 | 0.25 * | 0.11 | 0.13 | 0.25 * |
S × T | 0.14 | 0.72 ** | 0.69 ** | 0.41 * | 0.54 ** | 0.22 | 0.64 ** | 0.57 ** | 0.39 * | 0.42 * | 0.31 | 0.46 ** |
S × SN | 0.29 | 0.61 ** | 0.77 ** | 0.49 ** | 0.21 | 0.26 | 0.51 ** | 0.58 ** | 0.53 ** | 0.29 | 0.21 | 0.42 * |
T × SN | 0.26 | 0.28 | 0.15 | 0.38 * | 0.35 | 0.26 | 0.33 | 0.31 | 0.34 | 0.24 | 0.3 | 0.42 ** |
S × T × SN | 0.4 | 0.76 ** | 0.79 ** | 0.56 * | 0.58 ** | 0.32 | 0.7 ** | 0.68 ** | 0.67 ** | 0.46 | 0.38 | 0.58 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Zeng, F.; Zeng, Z.; Du, H.; Tang, H.; Zhang, H. The Variation in the Stoichiometric Characteristics of the Leaves and Roots of Karst Shrubs. Forests 2021, 12, 852. https://doi.org/10.3390/f12070852
Zou Z, Zeng F, Zeng Z, Du H, Tang H, Zhang H. The Variation in the Stoichiometric Characteristics of the Leaves and Roots of Karst Shrubs. Forests. 2021; 12(7):852. https://doi.org/10.3390/f12070852
Chicago/Turabian StyleZou, Zhigang, Fuping Zeng, Zhaoxia Zeng, Hu Du, Hui Tang, and Hao Zhang. 2021. "The Variation in the Stoichiometric Characteristics of the Leaves and Roots of Karst Shrubs" Forests 12, no. 7: 852. https://doi.org/10.3390/f12070852
APA StyleZou, Z., Zeng, F., Zeng, Z., Du, H., Tang, H., & Zhang, H. (2021). The Variation in the Stoichiometric Characteristics of the Leaves and Roots of Karst Shrubs. Forests, 12(7), 852. https://doi.org/10.3390/f12070852