Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
2.3. Transport Cost Modelling
- AW = Annual wage costs (AU$)
- W = wages including benefits (AU$)
- OH = Operating hours per year (h)
- L = Loads transported per year
- PH = Annual productive hours (h)
- HD = one-way haul distance (km/trip)
- AS = Average travel speed (km/h)
- D = Annual distance (km)
- M = Annual maintenance costs (AU$)
- MC = Maintenance cost (AU$/km)
- F = Annual fuel use (L)
- GVW = average gross vehicle weight (t)
- DPL = Annual distance on paved roads loaded (km)
- DPE = Annual distance on paved roads empty (km)
- Tare = average tare weight (t)
- DGL = Annual distance on gravel roads loaded (km)
- DGE = Annual distance on gravel roads empty (km)
- FC = Annual fuel cost
- FP = Fuel price (AU$/L)
- AC = Total annual costs (AU$/yr)
- AF = Annual fixed costs and overheads (AU$/yr)
- AT = Annual transported tonnage (t/yr)
- TR = Transportation rate (AU$/t)
3. Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Shaffer, R.M.; Stuart, W.B. A Checklist for Efficient Log Trucking. College of Agriculture and Life Sciences; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2005. [Google Scholar]
- Belbo, H.; Talbot, B. Systems Analysis of Ten Supply Chains for Whole Tree Chips. Forests 2014, 5, 2084–2105. [Google Scholar] [CrossRef] [Green Version]
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Tahvanainen, T.; Anttila, P. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass Bioenergy 2011, 35, 3360–3375. [Google Scholar] [CrossRef]
- Liimatainen, H.; Pöllänen, M.; Nykänen, L. Impacts of increasing maximum truck weight–case Finland. Eur. Transp. Res. Rev. 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Palander, T.; Borz, S.A.; Kärhä, K. Impacts of Road Infrastructure on the Environmental Efficiency of High Capacity Transportation in Harvesting of Renewable Wood Energy. Energies 2021, 14, 453. [Google Scholar] [CrossRef]
- Palander, T.; Haavikko, H.; Kortelainen, E.; Kärhä, K.; Borz, S.A. Improving Environmental and Energy Efficiency in Wood Transportation for a Carbon-Neutral Forest Industry. Forests 2020, 11, 1194. [Google Scholar] [CrossRef]
- Acuna, M.; Mirowski, L.; Ghaffariyan, M.R.; Brown, M. Optimising transport efficiency and costs in Australian wood chipping operations. Biomass Bioenergy 2012, 46, 291–300. [Google Scholar] [CrossRef]
- Väätäinen, K.; Laitila, J.; Anttila, P.; Kilpeläinen, A.; Asikainen, A. The influence of gross vehicle weight (GVW) and transport distance on timber trucking performance indicators–Discrete event simulation case study in Central Finland. Int. J. For. Eng. 2020, 31, 156–170. [Google Scholar] [CrossRef]
- Hamsley, A.K.; Greene, W.D.; Siry, J.P.; Mendell, B.C. Improving timber trucking performance by reducing variability of log truck weights. South. J. Appl. For. 2007, 31, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Lukason, O.; Ukrainski, K.; Varblane, U.J.D. Economic benefit of maximum truck weight regulation change for Estonian forest sector. Est. Discuss. Econ. Policy 2011, 19. [Google Scholar] [CrossRef] [Green Version]
- Sessions, J.; Wimer, J.; Boston, K. Increasing Value and Reducing Costs through Hauling Longer Logs: Opportunities and Issues. West. J. Appl. For. 2009, 24, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M.R. Methods to Manage and Optimize Forest Biomass Supply Chains: A Review. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- Trzciński, G.; Moskalik, T.; Wojtan, R.; Tymendorf, Ł.J.S. Variability of loads and gross vehicle weight in timber transportation. Sylwan 2017, 161, 1026–1034. [Google Scholar]
- Brown, M.; Ghaffariyan, M.R. Timber Truck Payload Management with Different In-Forest Weighing Strategies in Australia. Croat. J. For. Eng. 2016, 37, 131–138. [Google Scholar]
- Hajek, J.; Hein, D.; Swan, D. Transportation of raw forest products in northern Ontario by trucks. In Proceedings of the International Conference on Heavy Vehicles HVParis 2008, Paris, France, 18 April 2013. [Google Scholar]
- Brown, M.W. The Impact of Tare Weight on Transportation Efficiency in Australian Forest Operations; CRC for Forestry, Harvesting and Operations Bulletin 3: Boca Raton, FL, USA, December 2008. [Google Scholar]
- MacFarland, T.W.; Yates, J.M. Kruskal–Wallis H-test for oneway analysis of variance (ANOVA) by ranks. In Introduction to Nonparametric Statistics for the Biological Sciences Using R.; Springer: Heidelberg/Berlin, Germany, 2016; pp. 177–211. [Google Scholar]
- Williamson, D.F.; Parker, R.A.; Kendrick, J.S. The box plot: A simple visual method to interpret data. Ann. Intern. Med. 1989, 110, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Trzcinski, G.; Moskalik, T.; Wojtan, R. Total Weight and Axle Loads of Truck Units in the Transport of Timber Depending on the Timber Cargo. Forests 2018, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Regehr, J.D.; Maranchuk, K.; Vanderwees, J.; Hernandez, S. Gaussian Mixture Model to Characterize Payload Distributions for Predominant Truck Configurations and Body Types. J. Transp. Eng. Part B-Pavements 2020, 146, 04020017. [Google Scholar] [CrossRef]
- Laitila, J.; Asikainen, A.; Ranta, T. Cost analysis of transporting forest chips and forest industry by-products with large truck-trailers in Finland. Biomass Bioenergy 2016, 90, 252–261. [Google Scholar] [CrossRef]
- Strandgard, M.; Acuna, M.; Turner, P.; Mirowski, L. Use of modelling to compare the impact of roadside drying of Pinus radiata D.Don logs and logging residues on delivered costs using high capacity trucks in Australia. Biomass Bioenergy 2021, 147, 106000. [Google Scholar] [CrossRef]
- Reddish, R.P.; Baker, S.A.; Greene, W.D. Improving Log Trucking Efficiency by Using In-Woods Scales. South. J. Appl. For. 2011, 35, 178–183. [Google Scholar] [CrossRef] [Green Version]
Semi-Trailer | B-Double | Road Train | |
---|---|---|---|
Overall length (m) | 19 | 25 | 36.5 |
Standard Legal GVW (t) | 42 | 62.5 | 79 |
Legal GVW range due to localized allowance or restrictions (t) | 39.0–57.5 | 62.5–68.0 | 79.0–94.5 |
Cost Element | Semi-Trailer | B-Double | Road Train |
---|---|---|---|
Wages including benefits (AU$/hr) | 72 | 72 | 72 |
Operating hours per year | 2760 | 2760 | 2760 |
Annual productive hours | 2491 | 2491 | 2491 |
Avg load/unload time (min) | 50 | 80 | 90 |
Fuel price (AU$/L) | 1.35 | 1.35 | 1.35 |
Maintenance (AU$/km) | 0.45 | 0.50 | 0.55 |
Annual fixed costs and overheads (AU$/yr) | 150,000 | 160,000 | 170,000 |
Configuration | Metric | Gross | Legal GVW | Vehicle Tare | Net Payload |
---|---|---|---|---|---|
Semi-Trailer | Mean (t) | 47.84 | 50.19 | 17.92 | 29.92 |
Std. Dev. | 46.50 | 59.86 | 11.62 | 38.85 | |
Min (t) | 35.04 | 39.00 | 12.00 | 15.78 | |
Max (t) | 59.80 | 57.50 | 20.80 | 41.15 | |
B-Double | Mean (t) | 66.00 | 62.93 | 22.61 | 43.39 |
Std. Dev. | 21.96 | 14.66 | 14.35 | 27.85 | |
Min (t) | 59.00 | 62.50 | 16.80 | 32.02 | |
Max (t) | 74.96 | 68.00 | 27.50 | 50.90 | |
Road Train | Mean | 80.13 | 80.61 | 28.77 | 51.35 |
Std. Dev. | 40.74 | 32.24 | 25.00 | 49.89 | |
Min | 67.58 | 72.00 | 22.40 | 37.22 | |
Max | 99.95 | 94.50 | 36.98 | 70.20 | |
Total | Mean | 65.53 | 65.81 | 23.53 | 42.00 |
Std. Dev. | 145.65 | 139.42 | 51.01 | 102.28 | |
Min | 35.04 | 39.00 | 12.00 | 15.78 | |
Max | 99.95 | 94.50 | 36.98 | 70.20 |
Parameter | Configuration | Kolmogorov—Smirnova | ||
---|---|---|---|---|
Statistic | df | Sig. | ||
Net Payload | Semi-Trailer | 0.091 | 26,379 | 0.00 |
B-Double | 0.059 | 18,243 | 0.00 | |
Road Train | 0.025 | 31,374 | 0.00 | |
Vehicle Tare | Semi-Trailer | 0.155 | 26,379 | 0.00 |
B-Double | 0.078 | 18,243 | 0.00 | |
Road Train | 0.080 | 31,374 | 0.00 |
Test | Parameter | Sig. |
---|---|---|
Independent samples Kruskal–Wallis test | Net Payload | 0.00 |
Vehicle Tare | 0.00 | |
Independent Samples Median test | Net Payload | 0.00 |
Vehicle Tare | 0.00 |
Configuration Pair | Test Statistic | Std. Error | Std. Test Statistic | Sig. | Adj. Sig. |
---|---|---|---|---|---|
Semi-Trailer vs. B-Double | −22,562.1 | 211.3 | −106.8 | 0.00 | 0.00 |
Semi-Trailer vs. Road Train | −46,961.3 | 183.3 | −256.3 | 0.00 | 0.00 |
B-Double vs. Road Train | −24,399.1 | 204.3 | −119.5 | 0.00 | 0.00 |
Configuration Pair | Test Statistic | Std. Error | Std. Test Statistic | Sig. | Adj. Sig. |
---|---|---|---|---|---|
Semi-Trailer vs. B-Double | −24,646.3 | 211.3 | −116.7 | 0.00 | 0.00 |
Semi-Trailer vs. Road Train | −45,662.9 | 183.3 | −249.2 | 0.00 | 0.00 |
B-Double vs. Road Train | −21,016.6 | 204.3 | −102.9 | 0.00 | 0.00 |
Parameter | Metric | Configuration | Tare Weight | Net Weight |
---|---|---|---|---|
Configuration | Correlation coefficient | -- | 0.931 ** | 0.902 ** |
Sig. (2-tailed) | 0.000 | 0.000 | ||
Tare Weight | Correlation coefficient | 0.931 ** | -- | 0.795 ** |
Sig. (2-tailed) | 0.000 | 0.000 | ||
Net Weight | Correlation coefficient | 0.902 ** | 0.795 ** | -- |
Sig. (2-tailed) | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, M.W. Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study. Forests 2021, 12, 855. https://doi.org/10.3390/f12070855
Brown MW. Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study. Forests. 2021; 12(7):855. https://doi.org/10.3390/f12070855
Chicago/Turabian StyleBrown, Mark W. 2021. "Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study" Forests 12, no. 7: 855. https://doi.org/10.3390/f12070855
APA StyleBrown, M. W. (2021). Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study. Forests, 12(7), 855. https://doi.org/10.3390/f12070855