Estimating Rainfall Interception of Pinus hartwegii and Abies religiosa Using Analytical Models and Point Cloud
Abstract
:1. Introduction
2. Theory
2.1. Gash Model (1979)
2.2. The Sparse Gash Analytical Model by Valente et al. 1997
3. Materials and Methods
3.1. Study Site
3.2. Instrumentation
3.3. Meteorological Parameters
3.4. Parameters of the Canopy Structure
3.4.1. Method A
3.4.2. Method B
3.4.3. Fractioning of the Point Cloud into Three Classes
3.5. Implementation of the Models
3.6. Validation of the Models
4. Results and Discussion
4.1. Precipitation Events
4.2. Rainfall Interception, Throughfall, and Stemflow
4.3. Meteorological Parameters
4.4. Parameters of the Canopy Structure
4.5. Performance of the Models Considered
4.6. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantú-Silva, I.; Okurama, T. Rainfall Partitioning in a mixed white oak forest with dwarf bamboo undergrowth. J. Environ. Hydrol. 1996, 4, 1–16. [Google Scholar]
- Pérez-Arellano, R.; Moreno-Pérez, M.F.; Roldán-Cañas, J. Interceptación de la lluvia en individuos aislados de Pinus pinea y Cistus ladanifer: Efecto de diferentes parámetros climáticos. In Proceedings of the IV Water Engineering Conference, Precipitation and Erosive Processes, Córdova, España, 21–22 October 2015. [Google Scholar]
- Carlyle-Moses, D.E.; Gash, J.H.C. Rainfall Interception Loss by Forest Canopies. In Forest Hydrology and Biogeochemistry. Ecological Studies (Analysis and Synthesis); Delphis, F., Carlyle-Moses, D., Tanaka, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 216, pp. 407–423. [Google Scholar]
- Fan, J.; Oestergaard, K.T.; Guyot, A.; Lockington, D.A. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia. J. Hydrol. 2014, 515, 156–165. [Google Scholar] [CrossRef]
- Horton, E.R. Rainfall Interception. MWR 1919, 47, 603–623. [Google Scholar] [CrossRef]
- Chen, S.; Chen, C.; Zou, C.B.; Stebler, E.; Zhang, S.; Hou, L.; Wang, D. Application of Gash analytical model and parameterized Fan model to estimate canopy interception of a Chinese red pine forest. J. For. Res. 2013, 18, 335–344. [Google Scholar] [CrossRef]
- Valente, F.; David, J.S.; Gash, J.H.C. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. J. Hydrol. 1997, 190, 141–162. [Google Scholar] [CrossRef]
- Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests. I. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 1971, 9, 367–389. [Google Scholar] [CrossRef]
- Rutter, A.J.; Morton, A.J.; Robins, P.C. A Predictive Model of Rainfall Interception in Forests. II. Generalization of the Model and Comparison with Observations in Some Coniferous and Hardwood Stands. J. Appl. Ecol. 1975, 12, 367–380. [Google Scholar] [CrossRef]
- Gash, J.H.C. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- Gash, J.H.C.; Lloyd, C.R.; Lachaud, G. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 1995, 170, 79–86. [Google Scholar] [CrossRef]
- Hörmann, G.; Branding, A.; Clemen, T.; Herbst, M.; Hinrichs, M.; Thamm, F. Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany. Agric. For. Meteorol. 1996, 79, 131–148. [Google Scholar] [CrossRef]
- Liu, J.G. A theoretical model of the process of rainfall interception in forest canopy. Ecol. Model. 1988, 42, 111–123. [Google Scholar] [CrossRef]
- Murakami, S. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol. 2006, 319, 72–82. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. J. Hydrol. 2001, 247, 230–238. [Google Scholar] [CrossRef]
- Xiao, Q.; Mcpherson, E.G.; Ustin, S.L.; Grismer, M.E. A new approach to modeling tree rainfall interception. J. Geohys. Res. 2000, 105, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Mulder, J.P.M. Simulating Interception Loss Using Standard Meteorological Data. In The Forest-Atmosphere Interaction; Hutchison, B.A., Hicks, B.B., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 77–196. [Google Scholar]
- Calder, I.R. A stochastic model of rainfall interception. J. Hydrol. 1986, 89, 65–71. [Google Scholar] [CrossRef]
- Vegas-Galdos, F.; Alvaréz, C.; García, A.; Revilla, J.A. Estimated distributed rainfall interception using a simple conceptual model and Moderate Resolution Imaging Spectroradiometer (MODIS). J. Hydrol. 2012, 468, 213–228. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, L. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale. Water 2014, 6, 993–1012. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.M.T.; Ghimire, C.P.; Lubczynski, M.W. Remote sensing upscaling of interception loss from isolated oaks: Sardon catchment case study, Spain. J. Hydrol. 2017, 555, 489–505. [Google Scholar] [CrossRef]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef] [Green Version]
- David, T.S.; Gash, J.H.C.; Valente, F.; Pereira, J.S.; Ferreira, M.I.; David, J.S. Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydrol. Process. 2005, 20, 13–26. [Google Scholar] [CrossRef]
- Limousin, J.M.; Rambal, S.; Ourcival, J.M.; Joffre, R. Modelling rainfall interception in a mediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment. J. Hydrol. 2008, 357, 57–66. [Google Scholar] [CrossRef]
- Schellekens, J.; Scatena, F.N.; Bruijnzeel, L.A.; Wickel, A.J. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico. J. Hydrol. 1999, 225, 168–184. [Google Scholar] [CrossRef] [Green Version]
- Herbst, M.; Roberts, J.M.; Rosier, P.T.W.; Gowing, D.J. Measuring and modelling the rainfall interception loss by hedgerows in southern England. Agric. For. Meteorol. 2006, 141, 244–256. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X. Measurement and modelling of rainfall partitioning by deciduous Potentilla fruticosa shrub on the Qinghai-Tibet Plateau, China. Hydrol. Earth Syst. Sci. 2006, 589. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, A.; Hattori, S.; Park, H. The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash model. J. Hydrol. 2006, 318, 80–102. [Google Scholar] [CrossRef]
- Ghimire, C.P.; Bruijnzeel, L.A.; Lubczynski, M.W.; Ravelona, M.; Zwartendijk, B.W.; van Meerveld, H.J. Measurement and modeling of rainfall interception by two differently aged secondary forests in upland eastern Madagascar. J. Hydrol. 2017, 545, 212–225. [Google Scholar] [CrossRef]
- Klingaman, N.P.; Levia, D.F.; Frost, E.E. A Comparison of Three Canopy Interception Models for a Leafless Mixed Deciduous Forest Stand in the Eastern United States. J. Hydrometeorol. 2007, 8, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, S.M.M.; Attarod, P.; Pypker, T.G. Differences in Rainfall Interception during the Growing and Non-growing Seasons in a Fraxinus rotundifolia Mill. Plantation Located in a Semiarid Climate. J. Agric. Sci. Tech. 2015, 17, 145–156. [Google Scholar]
- Flores-Ayala, E.; Guerra-De la Cruz, V.; Terrazas-González, G.; Carrillo-Anzures, F.; Islas-Gutiérrez, F.; Acosta-Mireles, M.; Buendía-Rodríguez, E. Intercepción de lluvia en bosques de montaña en la cuenca del río Texcoco, México. Rev. Mex. de Cienc. Forestales. 2016, 7, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.; Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). Evapotranspiración del Cultivo; FAO: Rome, Italy, 2006. [Google Scholar]
- Villalobos, F.; Fereres, E. Principles of Agronomy for Sustainable Agriculture; Springer: New York, NY, USA, 2017. [Google Scholar]
- Thom, A.S. Momentum, Mass and Heat Exchange of Vegetation. Quart J. R. Met. Soc. 1972, 98, 124–134. [Google Scholar] [CrossRef]
- Gash, J.H.C.; Morton, A.J. An application of the Rutter model to the estimation of the interception loss from Thetford Forest. J. Hydrol. 1978, 38, 49–58. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Silván, J.L. Pareidolia v1.1: Una Aplicación para la Extracción de Objetos a Partir de las Nubes de Puntos en MATLAB. Available online: http://pr.centrogeo.org.mx/pareidolia/ (accessed on 12 November 2020).
- Silván, J.L.; Índices de vegetación. Centro de Investigación en Ciencias de Información; Geoespacial, A.C.; “Centro Geo”. Personal communication, 2018.
- Zaitunah, A.; Samsuri, S.; Ahmad, A.G.; Safitri, R.A. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 126, 012112. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Iroume, A.; Huber, A. Intercepción de las lluvias por la cubierta de bosques y efecto en los caudales de crecida en una cuenca experimental en Malalcahuello, IX Región, Chile. Bosque 2000, 21, 45–56. [Google Scholar] [CrossRef]
- Santiago-Hernández, L. Measurement and Analysis of Rainfall Interception in an Oak Forest: Application to the Watershed: La Barreta. Master’s Thesis, Autonomous University Queretaro, Santiago of Queretaro, Mexico, 2007; pp. 44–62. [Google Scholar]
- Llorens, P.; Domingo, F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 2007, 335, 37–54. [Google Scholar] [CrossRef]
- Llorens, P.; Gallart, F. A simplified method for forest water storage capacity measurement. J. Hydrol. 2000, 240, 131–144. [Google Scholar] [CrossRef]
- Sun, X.; Onda, Y.; Kato, H. Incident rainfall partitioning and canopy interception modeling for an abandoned Japanese cypress stand. J. For. Rest. 2014, 19, 317–328. [Google Scholar] [CrossRef]
- Huerta-García, R.; Ramírez-Serrato, N.L.; Yépez-Rincón, F.D.; Lozano-García, D.F. Precision of remote sensors to estimate aerial biomass parameters: Portable LIDAR and optical sensors. RCHSCFA 2017, 24, 219–235. [Google Scholar] [CrossRef]
- Martínez-Tobón, C.D.; Aunta-Duarte, J.E.; Valero-Fandiño, J.A. Application LIDAR data in estimating forest volume in the Metropolitan Park San Carlos. Cienc. Ing. Neogranad. 2013, 23, 7–21. [Google Scholar] [CrossRef]
Component of the Interception | Formulation | |
---|---|---|
Rainfall interception by canopy | ||
For m events of insufficient precipitation to saturate the canopy | ||
For n events of sufficiently large precipitation to saturate the canopy | Wetting up phase | |
Saturation phase | ||
Drying out phase | ||
Rainfall interception by trunk | ||
For q events of precipitation that manage to saturate the trunk | ||
For m+n−q events of precipitation that do not saturate the trunk |
Component of the Interception | Formulation | |
---|---|---|
Rainfall interception by canopy | ||
For m events of insufficient precipitation to saturate the canopy | ||
For n events of precipitation sufficiently large to saturate the canopy | Wetting up phase | |
Saturation phase | ||
Drying out phase | ||
Rainfall interception by trunk | ||
For q events of precipitation that manage to saturate the trunk | ||
For n-q events of precipitation that do not saturate the trunk |
Drone | Flight | Plot | Altitude (m) | Overlap | |
---|---|---|---|---|---|
% | Type | ||||
Inspire | 1 | P. hartwegii | 100 | 90 | Frontal |
85 | Lateral | ||||
2 | 100 | 90 | Frontal | ||
85 | Lateral | ||||
3 | A. religiosa | 100 | 90 | Frontal | |
85 | Lateral | ||||
Phantom 4 | 4 | 80 | 90 | Frontal | |
85 | Lateral |
Symbol | Parameter | Value | Units |
---|---|---|---|
ρ | Air density at constant pressure | 1.05 | kg m−3 |
Cp | Specific heat of the air | 1013.00 | J kg−1 K−1 |
γ | Psychometric constant | 66.00 | Pa K−1 |
λ | Latent heat of vaporization | 2.45 | J kg−1 |
A | Albedo | 0.15 | n/a |
No. E | Date | R 2 (mm h−1) | T min 3 (°C) | T max 4 (°C) | Mean T 5 (°C) | RH 6 (%) | BP 7 (mb) | U 8 (m/s) | Rs 9 (W m−2) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 19 May 2018 | 11.80 | 3.47 | 7.60 | 16.20 | 8.40 | 94.20 | 1007.68 | 1.92 | 18.76 |
3 | 21 May 2018 | 1.20 | 1.80 | 9.20 | 11.40 | 10.24 | 88.00 | 1009.94 | 1.28 | 73.80 |
5 | 06 June 2018 | 11.20 | 3.73 | 8.20 | 15.90 | 9.60 | 90.36 | 1005.32 | 2.18 | 28.52 |
6 | 07 June 2018 | 11.40 | 17.10 | 8.10 | 14.90 | 10.20 | 85.20 | 1002.44 | 5.78 | 18.40 |
8 | 13 June 2018 | 1.20 | 1.02 | 8.20 | 9.20 | 11.00 | 91.00 | 1012.56 | 2.00 | 231.81 |
9 | 13 June 2018 | 5.60 | 0.52 | 10.30 | 11.40 | 8.40 | 97.04 | 1011.62 | 0.00 | 4.66 |
11 | 15 June 2018 | 12.00 | 2.25 | 9.20 | 12.40 | 9.70 | 96.61 | 1008.22 | 1.21 | 16.20 |
15 | 21 2018 | 0.80 | 0.11 | 4.10 | 8.20 | 6.04 | 95.00 | 1011.69 | 0.60 | 1.30 |
17 | 22 June2018 | 0.80 | 1.60 | 8.10 | 8.40 | 8.20 | 93.20 | 1012.96 | 0.00 | 0.00 |
19 | 24 June2018 | 1.00 | 1.20 | 8.70 | 9.90 | 9.70 | 89.80 | 1011.34 | 0.60 | 90.40 |
No. E | Date | R 2 (mm h−1) | T min 3 (°C) | T max 4 (°C) | Mean T 5 (°C) | RH 6 (%) | BP 7 (mb) | U 8 (m/s) | Rs 9 (W m−2) | |
---|---|---|---|---|---|---|---|---|---|---|
2 | 20 May 2018 | 11.40 | 3.34 | 3.40 | 14.70 | 6.60 | 94.97 | 1005.80 | 0.36 | 11.44 |
4 | 22 May 2018 | 2.60 | 2.05 | 7.80 | 11.20 | 8.90 | 90.00 | 1010.04 | 2.08 | 0.00 |
7 | 12 June 2018 | 6.80 | 0.94 | 7.40 | 10.60 | 8.43 | 95.34 | 1010.59 | 0.38 | 18.17 |
10 | 14 June2018 | 17.80 | 1.25 | 7.60 | 10.50 | 9.27 | 96.52 | 1010.79 | 0.11 | 20.46 |
12 | 16 June 2018 | 3.60 | 0.51 | 6.80 | 10.00 | 8.80 | 96.72 | 1009.39 | 0.70 | 0.00 |
13 | 17 June 2018 | 16.00 | 3.00 | 10.00 | 13.60 | 11.60 | 92.72 | 1008.47 | 3.00 | 227.54 |
14 | 18 June 2018 | 1.20 | 1.03 | 9.20 | 10.10 | 9.67 | 98.00 | 1010.76 | 2.20 | 118.25 |
16 | 22 June2018 | 0.40 | 0.34 | 7.80 | 8.10 | 7.80 | 95.42 | 1013.55 | 3.60 | 0.00 |
18 | 23 June 2018 | 0.40 | 0.21 | 8.40 | 8.80 | 8.50 | 93.09 | 1012.66 | 0.00 | 0.00 |
20 | 25 June 2018 | 4.40 | 0.61 | 7.30 | 11.30 | 8.70 | 94.06 | 1012.76 | 0.40 | 21.09 |
Species | Throughfall | Stemflow | Interception | |||
---|---|---|---|---|---|---|
Mm | % | mm | % | mm | % | |
P. hartwegii | 97.45 | 73.38 | 4.51 | 3.13 | 19.63 | 23.48 |
A. religiosa | 88.77 | 60.61 | 3.54 | 1.89 | 29.27 | 37.49 |
A. religiosa | P. hartwegii | |||
---|---|---|---|---|
Method A | Method B | Method A | Method B | |
S | 0.80 | 0.89 | 0.70 | 0.85 |
0.84 | 0.51 | 0.82 | 0.67 | |
0.03 | 0.02 | 0.45 | 0.19 | |
0.03 | 0.20 | 0.04 | 0.16 | |
c | 0.83 | 0.83 | 0.70 | 0.70 |
No. E | Date | (mm) | I obs (mm) | Imod of the Gash Model (mm) | Imod of the Sparse Gash Analytical Model (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(A 1, PM 3) | (A, Gash 4) | (B 2, PM) | (B, Gash) | (A, PM) | (A, Gash) | (B, PM) | (B, Gash) | ||||
2 | 20 May 2018 | 11.40 | 1.68 | 1.25 | 2.05 | 1.14 | 2.10 | 1.27 | 2.54 | 1.16 | 2.42 |
4 | 22 May 2018 | 2.60 | 0.71 | 0.47 | 0.47 | 1.05 | 0.66 | 0.77 | 1.00 | 0.97 | 1.17 |
7 | 12 June 2018 | 6.80 | 1.17 | 1.02 | 1.22 | 1.09 | 1.41 | 0.93 | 1.63 | 1.11 | 1.83 |
10 | 14 June 2018 | 17.80 | 1.84 | 1.32 | 2.72 | 1.21 | 2.94 | 1.34 | 3.36 | 1.23 | 3.24 |
12 | 16 June 2018 | 3.60 | 0.55 | 0.65 | 0.65 | 1.38 | 0.84 | 0.81 | 1.15 | 1.08 | 1.42 |
13 | 17 June 2018 | 16.00 | 2.21 | 1.30 | 2.68 | 1.19 | 2.70 | 1.32 | 3.13 | 1.22 | 3.01 |
14 | 18 June 2018 | 1.20 | 0.47 | 0.22 | 0.22 | 0.58 | 0.40 | 0.71 | 0.79 | 0.84 | 0.84 |
16 | 22 June 2018 | 0.40 | 0.11 | 0.07 | 0.07 | 0.19 | 0.13 | 0.26 | 0.27 | 0.22 | 0.23 |
18 | 23 June 2018 | 0.40 | 0.13 | 0.07 | 0.07 | 0.19 | 0.13 | 0.26 | 0.27 | 0.22 | 0.23 |
20 | 25 June 2018 | 4.40 | 1.08 | 0.79 | 0.79 | 1.64 | 0.98 | 0.84 | 1.27 | 1.09 | 1.53 |
∑ Interception (mm) | 9.95 | 7.16 | 10.94 | 9.67 | 12.30 | 8.51 | 15.41 | 9.15 | 15.93 | ||
RMSE (mm) | 0.39 | 0.37 | 0.54 | 0.42 | 0.39 | 0.69 | 0.46 | 0.70 | |||
NSE | 0.68 | 0.72 | 0.40 | 0.63 | 0.69 | 0.01 | 0.55 | −0.03 |
No. E | Date | Im (mm) | Imod of the Gash Model (mm) | Imod of the Sparse Gash Analytical Model (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(A 1, PM) | (B 2, PM 3) | (B, Gash 4) | (A, PM) | (A, Gash) | (B, PM) | (B, Gash) | ||||
2 | 20 May 2018 | 11.40 | 2.76 | 0.92 | 1.22 | 2.79 | 1.29 | 2.76 | 1.82 | 2.69 |
4 | 22 May 2018 | 2.60 | 1.57 | 0.37 | 0.94 | 0.96 | 0.87 | 1.15 | 1.13 | 1.40 |
7 | 12 June 2018 | 6.80 | 2.82 | 0.87 | 1.17 | 1.96 | 1.05 | 1.87 | 1.85 | 2.02 |
10 | 14 June 2018 | 17.80 | 1.36 | 1.00 | 1.29 | 3.94 | 1.36 | 3.01 | 1.30 | 3.27 |
12 | 16 June 2018 | 3.60 | 1.65 | 0.50 | 1.13 | 1.25 | 0.92 | 1.32 | 1.14 | 1.55 |
13 | 17 June 2018 | 16.00 | 1.91 | 0.97 | 1.27 | 3.62 | 1.34 | 2.85 | 1.28 | 3.15 |
14 | 18 June 2018 | 1.20 | 0.65 | 0.19 | 0.54 | 0.56 | 0.82 | 0.91 | 0.93 | 1.00 |
16 | 22 June 2018 | 0.40 | 0.22 | 0.06 | 0.20 | 0.20 | 0.32 | 0.32 | 0.22 | 0.23 |
18 | 23 June 2018 | 0.40 | 0.18 | 0.06 | 0.20 | 0.20 | 0.32 | 0.32 | 0.22 | 0.23 |
20 | 25 June 2018 | 4.40 | 1.81 | 0.60 | 1.14 | 1.48 | 0.95 | 1.45 | 1.15 | 1.67 |
∑ Interception 5 (mm) | 14.92 | 5.55 | 9.08 | 16.96 | 9.23 | 15.95 | 11.04 | 17.19 | ||
RMSE (mm) | 1.12 | 0.82 | 1.05 | 0.86 | 0.71 | 0.61 | 0.78 | |||
NSE | −0.63 | 0.14 | −0.42 | 0.04 | 0.35 | 0.52 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolaños-Sánchez, C.; Prado-Hernández, J.V.; Silván-Cárdenas, J.L.; Vázquez-Peña, M.A.; Madrigal-Gómez, J.M.; Martínez-Ruíz, A. Estimating Rainfall Interception of Pinus hartwegii and Abies religiosa Using Analytical Models and Point Cloud. Forests 2021, 12, 866. https://doi.org/10.3390/f12070866
Bolaños-Sánchez C, Prado-Hernández JV, Silván-Cárdenas JL, Vázquez-Peña MA, Madrigal-Gómez JM, Martínez-Ruíz A. Estimating Rainfall Interception of Pinus hartwegii and Abies religiosa Using Analytical Models and Point Cloud. Forests. 2021; 12(7):866. https://doi.org/10.3390/f12070866
Chicago/Turabian StyleBolaños-Sánchez, Claudia, Jorge Víctor Prado-Hernández, José Luis Silván-Cárdenas, Mario Alberto Vázquez-Peña, José Manuel Madrigal-Gómez, and Antonio Martínez-Ruíz. 2021. "Estimating Rainfall Interception of Pinus hartwegii and Abies religiosa Using Analytical Models and Point Cloud" Forests 12, no. 7: 866. https://doi.org/10.3390/f12070866
APA StyleBolaños-Sánchez, C., Prado-Hernández, J. V., Silván-Cárdenas, J. L., Vázquez-Peña, M. A., Madrigal-Gómez, J. M., & Martínez-Ruíz, A. (2021). Estimating Rainfall Interception of Pinus hartwegii and Abies religiosa Using Analytical Models and Point Cloud. Forests, 12(7), 866. https://doi.org/10.3390/f12070866