Estimation of Productivity and Costs of Using a Track Mini-Harvester with a Stroke Head for the First Commercial Thinning of a Scots Pine Stand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Harvesting Systems
2.2. Study Description
2.3. Productivity and Cost Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Państwowe, L. Lasy w Polsce 2018 [Forests in Poland 2018]; Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2018; p. 63. [Google Scholar]
- Ameztegui, A.; Cabon, A.; De Cáceres, M.; Coll, L. Managing stand density to enhance the adaptability of Scots pine stands to climate change: A modelling approach. Ecol. Model. 2017, 356, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Karttunen, K.; Laitila, J.; Ranta, T. First-thinning harvesting alternatives for industrial or energy purposes based on re-gional Scots pine stand simulations in Finland. Silva Fenn. 2016, 50, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hari, P.; Aakala, T.; Aalto, J.; Bäck, J.; Hollmén, J.; Jõgiste, K.; Havimo, M. Newtonian boreal forest ecology: The Scots pine ecosystem as an example. PLoS ONE 2017, 12, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Quintero-Méndez, M.; Jerez-Rico, M. Heuristic forest planning model for optimizing timber production and carbon sequestration in teak plantations. iForest-Biogeosciences 2017, 10, 430–439. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.C.; Martin, A.R. Carbon Content of Tree Tissues: A Synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Berendt, F.; Tolosana, E.; Hoffmann, S.; Alonso, P.; Schweier, J. Harvester Productivity in Inclined Terrain with Extended Machine Operating Trail Intervals: A German Case Study Comparison of Standing and Bunched Trees. Sustainability 2020, 12, 9168. [Google Scholar] [CrossRef]
- Liski, E.; Jounela, P.; Korpunen, H.; Sosa, A.; Lindroos, O.; Jylhä, P. Modeling the productivity of mechanized CTL harvesting with statistical machine learning methods. Int. J. For. Eng. 2020, 31, 253–262. [Google Scholar] [CrossRef]
- Mederski, P.S. A comparison of harvesting productivity and costs in thinning operations with and without midfield. For. Ecol. Manag. 2006, 224, 286–296. [Google Scholar] [CrossRef]
- Forest Management Certification. Available online: https://fsc.org/en/forest-management-certification (accessed on 6 June 2020).
- Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. Influence of Oil Contamination on Physical and Biological Properties of Forest Soil After Chainsaw Use. Water Air Soil Pollut. 2015, 226, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, B.G.; Kruys, N.; Ranius, T. Ecology of species living on dead wood—Lessons for dead wood management. Silva Fenn. 2005, 39, 289–309. [Google Scholar] [CrossRef] [Green Version]
- Mederski, P.S.; Venanzi, R.; Bembenek, M.; Karaszewski, Z.; Rosińska, M.; Pilarek, Z.; Luchenti, I.; Surus, M. Designing Thinning Operations in 2nd Age Class Pine Stands—Economic and Environmental Implications. Forests 2018, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Bembenek, M.; Tsioras, P.A.; Karaszewski, Z.; Zawieja, B.; Bakinowska, E.; Mederski, P.S. Effect of Day or Night and Cumulative Shift Time on the Frequency of Tree Damage during CTL Harvesting in Various Stand Conditions. Forests 2020, 11, 743. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Labelle, E.R. The Effect of New Silvicultural Trends on the Mental Workload of Harvester Operators. Croat. J. For. Eng. 2020, 41, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Tylek, P.; Sowa, J.M.; Rudy, P.; Gaj-Gielarowiec, D. The mental workload of harvester operators working in steep terrain conditions. Silva Fenn. 2020, 54. [Google Scholar] [CrossRef]
- Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Mitka, B.; Tylek, P.; Kulak, D.; Adamski, K. Perception of the Harvester Operator’s Working Environment in Windthrow Stands. Forests 2021, 12, 168. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Low-Investment Fully Mechanized Harvesting of Short-Rotation Poplar (Populus spp.) Plantations. Forests 2020, 11, 502. [Google Scholar] [CrossRef]
- Visser, R.; Spinelli, R.; Magagnotti, N. Landing characteristics for harvesting operations in New Zealand. International Int. J. For. Eng. 2011, 22, 2–6. [Google Scholar] [CrossRef]
- Bodył, M. Rozmiar pozyskania maszynowego w Polsce (Share of mechanised timber harvesting in Poland). Drwal 2019, 3, 5–9. [Google Scholar]
- Mederski, P.S.; Borz, S.A.; Đuka, A.; Lazdiņš, A. Challenges in Forestry and Forest Engineering—Case Studies from Four Countries in East Europe. Croat. J. For. Eng. 2017, 42, 20. [Google Scholar] [CrossRef]
- Kocel, J. Development of the forestry services sector in Poland. Folia For. Pol. Ser. A 2010, 52, 44–53. [Google Scholar]
- Kocel, J. The Role of the Forest Services Sector in the Socio-Economic Environment of the State Forest. For. Lett. 2013, 104, 23–33. [Google Scholar]
- Szewczyk, K. Importance of consortia in forest service sector—Zielona Gora Regional Directorate of the State Forests case study. Sylwan 2020, 164, 942–950. [Google Scholar]
- Russell, F.; Mortimer, D. A Review of Small-Scale Harvesting Systems in Use Worldwide and Their Potential Application in Irish Forestry; COFORD, National Council for Forest Research and Development: Dublin, Ireland, 2005; pp. 1–56. [Google Scholar]
- Wójcik, K. Nowoczesne maszyny i technologie dla leśnictwa. Tech. Rol. Ogrod. Leśna 2010, 2, 21–25. [Google Scholar]
- Kormanek, M.; Baj, D. Analysis of operation performance in the process of machine wood harvesting with Fao Far 6840 mini-harvester. Agric. Eng. 2018, 22, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Kärhä, K. Industrial supply chains and production machinery of forest chips in Finland. Biomass Bioenergy 2011, 35, 3404–3413. [Google Scholar] [CrossRef]
- Holzleitner, F.; Langmaier, M.; Hochbichler, E.; Obermayer, B.; Stampfer, K.; Kanzian, C. Effect of prior tree marking, thinning method and topping diameter on harvester performance in a first thinning operation—A field experiment. Silva Fenn. 2019, 53, 1–22. [Google Scholar] [CrossRef]
- Cavalli, R.; Grigolato, S. Influence of characteristics and extension of a forest road network on the supply cost of forest woodchips. J. For. Res. 2010, 15, 202–209. [Google Scholar] [CrossRef]
- Egnell, G.; Ulvcrona, K.A. Stand productivity following whole-tree harvesting in early thinning of Scots pine stands in Sweden. For. Ecol. Manag. 2015, 340, 40–45. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R. Good Practice Guidelines for Biomass Production Studies; CNR IVALSA: Sesto Fiorentino, Italy, 2012; p. 52. Available online: https://pub.epsilon.slu.se/10656/11/magagnotti_n_spinelli_r_130812.pdf (accessed on 10 April 2021).
- Holzleitner, F.; Stampfer, K.; Visser, R. Utilization rates and cost factors in timber harvesting based on long-term machine data. Croat. J. For. Eng. 2011, 32, 501–508. Available online: http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=108152 (accessed on 10 April 2021).
- Ghaffariyan, M.R.; Sessions, J.; Brown, M. Roadside chipping in a first thinning operation for radiata pine in South Australia. Croat. J. For. Eng. 2013, 34, 91–101. Available online: http://www.crojfe.com/r/i/reza_91-101.pdf (accessed on 10 April 2021).
- FAO. Cost control in forest harvesting and road construction. FAO For. Pap. 1992, 99, 15. Available online: http://www.fao.org/docrep/t0579e/t0579e05.htm (accessed on 18 July 2017).
- Ackerman, P.; Belbo, H.; Eliasson, L.; de Jong, A.; Lazdins, A.; Lyons, J. The COST model for calculation of forest operations costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Bruchwald, A. Pośredni sposób budowy modelu przekroju podłużnego strzały bez kory sosny [An indirect method of building a taper model construction for pine stem inside bark]. Sylwan 2004, 148, 3–7. [Google Scholar]
- Spława-Neyman, S.; Owczarek, Z. Sosna (Pinus Sylvestris L.). Available online: https://www.itd.poznan.pl/pl/vademecum/sosna (accessed on 18 July 2017).
- Meredieu, C.; Perret, C.; Dreyfus, P. Modelling dominant height growth: Effect of stand density. In Modelling Forest Systems, 6th ed.; Amaro, A., Reed, D., Soares, P., Eds.; CABI: London, UK, 2003; pp. 111–123. [Google Scholar]
- StatSoft. STATISTICA (Data Analysis Software System) 2015, Version 12. Available online: https://www.statsoft.com (accessed on 31 March 2015).
- R Core Team. R: A Language and Environment for Statistical Somputing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.r-project.org (accessed on 31 March 2015).
- GUS. Statistical Yearbook of Forestry; Główny Urząd Statystyczny Statistics Poland: Warsaw, Poland, 2020. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-forestry-2020,12,3.html (accessed on 15 April 2021).
- Vangansbeke, P.; Osselaere, J.; Dael, M.; Van Frenne, P.; De Gruwez, R.; Pelkmans, L.; Verheyen, K. Logging operations in pine stands in Belgium with additional harvest of woody biomass: Yield, economics, and energy balance. Can. J. For. Res. 2015, 45, 987–997. [Google Scholar] [CrossRef]
- Rottensteiner, C.; Affenzeller, G.; Stampfer, K. Evaluation of the feller-buncher moipu 400E for energy wood harvesting. Croat. J. For. Eng. 2008, 29, 117–128. [Google Scholar]
- Kanzian, C.; Holzleitner, F.; Stampfer, K.; Ashton, S. Regional energy wood logistics—Optimizing local fuel supply. Silva Fenn. 2009, 43, 113–128. Available online: http://www.metsantutkimuslaitos.fi/silvafennica/full/sf43/sf431113.pdf (accessed on 10 April 2021). [CrossRef] [Green Version]
- Ghaffariyan, M.R.; Sessions, J.; Brown, M. Evaluating productivity, cost, chip quality and biomass recovery for a mobile chipper in Australian roadside chipping operations. J. For. Sci. 2012, 58, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Magagnotti, N. Performance and cost of a new mini-forwarder for use in thinning operations. J. For. Res. 2010, 15, 358–364. [Google Scholar] [CrossRef]
- Bergström, D.; Bergsten, U.; Nordfjell, T. Comparison of boom-corridor thinning and thinning from below harvesting methods in young dense Scots pine stands. Silva Fenn. 2010, 44, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Erber, G.; Holzleitner, F.; Kastner, M.; Stampfer, K. Effect of multi-tree handling and tree-size on harvester performance in small-diameter hardwood thinnings. Silva Fenn. 2016, 50, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P. Multi tree cut to length harvesting of short rotation poplar plantations. Eur. J. For. Res. 2021, 140, 345–354. [Google Scholar] [CrossRef]
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Łacka, A.; Szczepańska-Alvarez, A.; Rosińska, M. Estimating and modelling harvester productivity in Pine Stands of different ages, densities and thinning intensities. Croat. J. For. Eng. 2016, 37, 27–36. [Google Scholar]
- Ackerman, S.A.; Seifert, S.; Ackerman, P.A.; Seifert, T. Mechanised pine thinning harvesting simulation: Productivity and cost improvements as a result of changes in planting geometry. Croat. J. For. Eng. 2016, 37, 1–15. [Google Scholar]
- Ochał, W.; Grabczyński, S.; Orzeł, S.; Wertz, B.; Socha, J. Aboveground biomass allocation in Scots pines of different biosocial positions in the stand. Sylwan 2013, 157, 737–746. [Google Scholar]
- Wertz, B.; Bembenek, M.; Karaszewski, Z.; Ochal, W.; Skorupski MStrzelinski, P.; Wegiel, A.; Mederski, P.S. Impact of Stand Density and Tree Social Status on Aboveground Biomass Allocation of Scots Pine Pinus sylvestris L. Forests 2020, 11, 765. [Google Scholar] [CrossRef]
- Czuraj, M. Tablice Miąższości Kłód Odziomkowych I Drzew Stojących [Volume Tables of Stems and Growing Trees]; PWRiL: Warszawa, Poland, 1991; p. 364. [Google Scholar]
Unit | Kubota KX057-4 Excavator with Arbro 400 S Harvester Head | MTZ Belarus 952.2 Farm Tractor | FAO FAR 842 Logging Trailer with 3264 Crane | |
---|---|---|---|---|
Engine | kW (HP) | 34 (46) | 66 (90) | - |
Dimensions length/height/width | mm | 5520/2550/1960 Overall | 4090/2840/1970 Overall | 4420/1630/1250 Load compartment |
Minimum ground clearance | mm | 310 | 465 | 620 |
Operating weight | kg | 5550 (excavator) 330 (harvester head) | 4500 | 2550 (8 t load capacity) |
Maximum outreach | m | 6.5 | - | 6.4 |
Gripping range | mm m2 | (40, 300) | - | 0.16 |
Maximum angle | mm | 360 | - | 1200 |
Delimbing speed (backwards/forwards) | m/s mm | 0.3–0.5 stroke: 660 | - | - |
Description | Unit | Sample Plots along Wide Access Trails (AT35) | Sample Plots along Narrow Access Trails (AT27) | Schematic Tree Extraction along the Rows (with Stump Removal and Level of Trail) (AT27 Schemextraction) |
---|---|---|---|---|
Area | ha | 1 | 1.5 | 0.10 |
Average diameter at breast height (DBH) outside bark | cm | 11.7 | 12.3 | 13.5 |
Initial tree density | number per hectare | 2353 | 2142 | 1882 |
Average height of removed trees (dominant height of 10%) | m | 13.4 (15.0) | 13.4 (15.0) | 13.4 (15.0) |
Average tree volume (95% confidence interval) | m3 outside bark | 0.074 (0.061, 0.087) | 0.082 (0.073, 0.090) | 0.103 (0.095, 0.111) |
Thinning intensity volume (v/v) per sample plot in percent (95% confidence interval) | % | 18.8 (15.1, 22.5) | 27.8 (24.2, 31.4) | 100 |
Average relative spacing index RSI/Hart–Becking index (95% confidence interval) | m | 12.15 (11.59, 12.72) | 12.96 (12.27, 13.65) | 12.64 (12.15, 13.12) |
Number of sample plots | n | 20 | 30 | 15 |
Tree species | - | Scots pine | Scots pine | Scots pine |
Age | year | 25 | 25 | 25 |
Stand quality 1 | - | IA | IA | IA |
Stocking degree 2 | - | 1.0 | 1.0 | 1.0 |
Forest type | Fresh mixed coniferous | Fresh mixed coniferous | Fresh mixed coniferous |
Unit | Kubota KX057-4 Excavator with Arbro 400 S Harvester Head | MTZ Belarus 952.2 Farm Tractor | FAO FAR 842 Logging Trailer with 3264 Crane | |
---|---|---|---|---|
Average fuel consumption (0.95 CI) | dm/PMH | 2.2 a (1.4, 3.1) | 8.5 b | |
Average speed on sample plots (0.95 CI) | m/s | 0.43 c (0.36, 0.52) | 1.45 d (1.19, 1.72) | |
Purchase price (VAT 0%) | EUR | 90,000 | 20,000 | 13,800 |
Estimated annual productivity e | m3/year | 3028 | 4307 | 4307 |
Expected economic life e | year | 7.68 | 9.45 | 9.45 |
Salvage value | % | 10 | 10 | 10 |
Machine utilization rate e | % | 62 | 63 | 63 |
Variable | F-Test for Equal Variances | t-Test for Equal Average | ||
---|---|---|---|---|
F-Stat | p-Value | t-Stat | p-Value | |
Tree volume outside bark [m3] | 0.6551 | 0.1485 | 2.0106 b | 0.3060 |
Relative spacing index (RSI) | 2.0772 | 0.0339 a | 1.7667 c | 0.0836 |
Thinning intensity (volume) | 1.4275 | 0.2112 | 2.0106 b | 0.0019 a |
Harvesting: Kubota KX057-4 with Arbro 400 S | Forwarding: MTZ Belarus 952.2 Tractor with FAO FAR 842 Trailer | |||
---|---|---|---|---|
Variable | Sample Plots along Wide Access Trails (AT35) | Sample Plots along Narrow Access Trails (AT27) | Schematic Tree Extraction along the Rows (within Stump Removal and Level of Trail), (AT27 Schemextraction) | |
Average | 3.09 | 3.28 | 3.47 | 4.07 |
SD | 0.93 | 0.71 | 1.81 | 0.66 |
max | 5.29 | 5.09 | 6.43 | 5.11 |
min | 1.26 | 1.46 | 1.07 | 3.03 |
Variable | Contrast 1 | Contrast 2 |
---|---|---|
AT27 | −1 | −1 |
AT35 | 1 | −1 |
AT27 schemextraction | 0 | 2 |
Contrast evaluation | −0.0158 | 0.3912 |
t-stat | −0.3781 | 4.5046 |
p-value | 0.7067 | 3.1 × 10−5 |
Parameter | Value | Std. Error | t-Stat | Residual, ε (Average SD) |
---|---|---|---|---|
Model 1: Total sample plots along narrow and wide access trails (AT35 and AT27) | ||||
b0 | 3.0239 | 0.0893 | 33.846 * | (0, 0.0868) S–W = 0.9621 p = 0.1090 |
b1 | 0.7283 | 0.0340 | 21.423 * | |
Model 2: Schematic tree extraction along the rows (within stump removal and level of trail) (AT27 schemextraction) | ||||
b0 | 2.8154 | 0.2312 | 12.178 * | (0, 0.2527) S–W = 0.9472 p = 0.4811 |
b1 | 0.7224 | 0.0927 | 7.791 * |
Parameter | Value | Std. Error | t-Stat | Residual, ε (Aver., SD) |
---|---|---|---|---|
Model 3: Sample plots along wide access trails (AT35) | ||||
b0 | 3.0486 | 0.1987 | 15.3439 * | (0.000, 0.1189) S–W = 0.9388 p = 0.2277 |
b1 | 0.6034 | 0.0830 | 7.2700 * | |
b2 | 0.2021 | 0.0511 | 3.9578 * | |
Model 4: Sample plots along narrow access trails (AT27) | ||||
b0 | 3.2387 | 0.2941 | 11.0122 * | (0.000, 0.1660) S–W = 0.9508 p = 0.1779 |
b1 | 0.8093 | 0.1151 | 7.0344 * |
Total Costs | Annual | Monthly | PMH | m3 | Share in Total Cost (%) |
---|---|---|---|---|---|
Kubota KX057-4 excavator with Arbro 400 S harvester head | |||||
Fixed | 20,227 | 1686 | 19.42 | 6.01 | 30.7 |
Variable | 14,472 | 1206 | 13.89 | 4.30 | 21.0 |
Operator | 19,953 | 1663 | 19.16 | 5.93 | 30.3 |
Net (excluding profit margin) | 54,651 | 4554 | 52.47 | 16.24 | 83.0 |
Gross (including 10% profit margin) | 65,842 | 5487 | 63.21 | 19.56 | 100.0 |
MTZ Belarus 952.2 farm tractor with FAO FAR 842 logging trailer | |||||
Fixed | 7660 | 638 | 7.24 | 1.78 | 16.9 |
Variable | 13,057 | 1088 | 12.34 | 3.03 | 28.7 |
Operator | 17,513 | 1459 | 16.55 | 4.07 | 38.6 |
Net (excluding profit margin) | 38,230 | 3186 | 36.12 | 8.87 | 84.1 |
Gross (including 10% profit margin) | 45,471 | 3789 | 42.96 | 10.56 | 100.0 |
Utilization Rate | Kubota KX057-4 Excavator with Arbro 400 S Harvester Head | MTZ Belarus 952.2 Farm Tractor with FAO FAR 842 Logging Trailer | ||
---|---|---|---|---|
EUR/PMH | EUR/m3 | EUR/PMH | EUR/m3 | |
0.6 | 53.41 | 16.53 | 37.15 | 9.13 |
0.7 | 49.24 | 15.24 | 34.05 | 8.37 |
0.8 | 46.12 | 14.27 | 31.73 | 7.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszczyński, K.; Stańczykiewicz, A.; Kulak, D.; Szewczyk, G.; Tylek, P. Estimation of Productivity and Costs of Using a Track Mini-Harvester with a Stroke Head for the First Commercial Thinning of a Scots Pine Stand. Forests 2021, 12, 870. https://doi.org/10.3390/f12070870
Leszczyński K, Stańczykiewicz A, Kulak D, Szewczyk G, Tylek P. Estimation of Productivity and Costs of Using a Track Mini-Harvester with a Stroke Head for the First Commercial Thinning of a Scots Pine Stand. Forests. 2021; 12(7):870. https://doi.org/10.3390/f12070870
Chicago/Turabian StyleLeszczyński, Krzysztof, Arkadiusz Stańczykiewicz, Dariusz Kulak, Grzegorz Szewczyk, and Paweł Tylek. 2021. "Estimation of Productivity and Costs of Using a Track Mini-Harvester with a Stroke Head for the First Commercial Thinning of a Scots Pine Stand" Forests 12, no. 7: 870. https://doi.org/10.3390/f12070870
APA StyleLeszczyński, K., Stańczykiewicz, A., Kulak, D., Szewczyk, G., & Tylek, P. (2021). Estimation of Productivity and Costs of Using a Track Mini-Harvester with a Stroke Head for the First Commercial Thinning of a Scots Pine Stand. Forests, 12(7), 870. https://doi.org/10.3390/f12070870