How to Evaluate Downed Fine Woody Debris Including Logging Residues?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description and Measurements in the Test Zone
2.2. Description and Measurements in the Pilot Stand and the Forest Stands
2.3. Volume and Biomass Estimates
2.4. Method Efficiency
2.5. Accuracy Assessment and Statistical Analyses
3. Results
3.1. Accuracy and Efficiency of the Line-Intersect Sampling (LIS) and Fixed-Area Sampling (FAS) Methods for Very Fine Woody Debris (VFWD, Diameter < 4 cm)
3.1.1. Comparison of LIS and FAS Volume Estimates
3.1.2. Comparison of the Time Spent
3.1.3. Influence of Plot Size and Number on VFWD Estimates
3.1.4. Influence of Debris Diameter and Density Measurements on the Estimates
3.2. Optimizing the Sampling of Woody Pieces 4–7 cm in Diameter (LFWD) with the LIS Method
3.2.1. Diameter and Density Measurements
3.2.2. Transect Length
3.2.3. Transect Number in Relation to Transect Length
4. Discussion
4.1. Trueness, Precision and Efficiency of FAS and LIS
4.2. Bias in Estimates for the LIS Method
5. Conclusions
6. Proposition of an Optimal Protocol for Fine Woody Debris (FWD) Inventories at Stand Level
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Achat, D.; Deleuze, C.; Landmann, G.; Pousse, N.; Ranger, J.; Augusto, L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manag. 2015, 348, 124–141. [Google Scholar] [CrossRef]
- Thiffault, E.; Barrette, J.; Paré, D.; Titus, B.D.; Keys, K.; Morris, D.M.; Hope, G. Developing and validating indicators of site suitability for forest harvesting residue removal. Ecol. Indic. 2014, 43, 1–18. [Google Scholar] [CrossRef]
- Cacot, E.; Deleuze, C.; Boldrini, C. Observatoire des pratiques de récolte du bois énergie et évaluation d’outils de flux. In Projet GERBOISE—Gestion RaiSonnée Du Bois Énergie; ADEME: Verneuil-sur-Vienne, France, 2018; p. 51. [Google Scholar]
- Egnell, G. A review of Nordic trials studying effects of biomass harvest intensity on subsequent forest production. For. Ecol. Manag. 2017, 383, 27–36. [Google Scholar] [CrossRef]
- Hume, A.M.; Chen, H.Y.H.; Taylor, A.R. Intensive forest harvesting increases susceptibility of northern forest soils to carbon, nitrogen and phosphorus loss. J. Appl. Ecol. 2018, 55, 246–255. [Google Scholar] [CrossRef] [Green Version]
- James, J.; Harrison, R. The Effect of Harvest on Forest Soil Carbon: A Meta-Analysis. Forestry 2016, 7, 308. [Google Scholar] [CrossRef]
- Thiffault, E.; Paré, D.; Brais, S.; Titus, B.D. Intensive biomass removals and site productivity in Canada: A review of relevant issues. For. Chron. 2010, 86, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Ranius, T.; Hämäläinen, A.; Egnell, G.; Olsson, B.; Eklöf, K.; Stendahl, J.; Rudolphi, J.; Sténs, A.; Felton, A. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. J. Environ. Manag. 2018, 209, 409–425. [Google Scholar] [CrossRef]
- Landmann, G.; Augusto, L.; Pousse, N.; Gosselin, M.; Cacot, E.; Deleuze, C.; Bilger, I.; Amm, A.; Bilot, N.; Boulanger, V. Recommandations Pour Une Récolte Durable De Biomasse Forestière Pour L’énergie—Focus Sur Les Menus Bois Et Les Souches; ADEME: Ecofor, France, 2018. [Google Scholar]
- Stupak, I.; Lattimore, B.; Titus, B.D.; Smith, C.T. Criteria and indicators for sustainable forest fuel production and harvesting: A review of current standards for sustainable forest management. Biomass Bioenergy 2011, 35, 3287–3308. [Google Scholar] [CrossRef]
- Marchal, D.; van Stappen, F.; Schenkel, Y. Sustainable production criteria and indicators for solid biofuels. Biotechnol. Agron. Soc. Environ. 2009, 13, 165–176. [Google Scholar]
- Landmann, G.; Augusto, L.; Bilger, I.; Cacot, E.; Deleuze, D.; Gosselin, M.; Pousse, N. Projet GERBOISE, Gestion Raisonnée De La Récolte De Bois Énergie. Synthèse; ECOFOR: Paris, France; ADEME: Paris, France, 2018; p. 7. [Google Scholar]
- Nemec, A.F.L.; Davis, G. Efficiency of Six Line Intersect Sampling Designs for Estimating Volume and Density of Coarse Woody Debris; Technical Report; Forest Research: Nanaimo, BC, Canada, 2002. [Google Scholar]
- Rondeux, J.; Bertini, R.; Bastrup-Birk, A.; Corona, P.; Latte, N.; McRoberts, R.E.; Ståhl, G.; Winter, S.; Chirici, G. Assessing Deadwood Using Harmonized National Forest Inventory Data. For. Sci. 2012, 58, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Yan, E.; Wang, X.; Huang, J. Concept and Classification of Coarse Woody Debris in Forest Ecosystems. Front. Biol. China 2006, 1, 76–84. [Google Scholar] [CrossRef]
- Woodall, C.W.; Monleon, V.J.; Fraver, S.; Russell, M.B.; Hatfield, M.H.; Campbell, J.L.; Domke, G.M. Data descriptor: The downed and dead wood inventory of forests in the United States. Sci. Data 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Teissier Du Cros, R.; Lopez, S. Preliminary study on the assessment of deadwood volume by the French national forest inventory. Ann. For. Sci. 2009, 66, 302. [Google Scholar] [CrossRef] [Green Version]
- Nordén, B.; Ryberg, M.; Götmark, F.; Olausson, B. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broad-leaf forests. Biol. Conserv. 2004, 117, 1–10. [Google Scholar] [CrossRef]
- Manning, J.A.; Edge, W.D. Small Mammal Responses to Fine Woody Debris and Forest Fuel Reduction in Southwest Oregon. J. Wildl. Manag. 2008, 72, 625–632. [Google Scholar] [CrossRef]
- Ferro, M.L.; Gimmel, M.L.; Harms, K.E.; Carlton, C.E. The Beetle Community of Small Oak Twigs in Louisiana, with a Literature Review of Coleoptera from Fine Woody Debris. Coleopt. Bull. 2009, 63, 239–263. [Google Scholar] [CrossRef]
- Bässler, C.; Ernst, R.; Cadotte, M.; Heibl, C.; Müller, J. Near-to-nature logging influences fungal community assembly processes in a temperate forest. J. Appl. Ecol. 2014, 51, 939–948. [Google Scholar] [CrossRef]
- Stevens, V. The Ecological Role of Coarse Woody Debris: An Overview of the Ecological Importance of CWD in BC Forests; British Columbia, Ministry of Forests, Research Program: Victoria, BC, Canada, 1997.
- Kruys, N.; Jonsson, B.G. Fine woody debris is important for species richness on logs in managed boreal spruce forests of northern Sweden. Can. J. Forest Res. Revue Can. Rech. For. 1999, 29, 1295–1299. [Google Scholar] [CrossRef]
- Gove, J.H.; Van Deusen, P.C. On fixed-area plot sampling for downed coarse woody debris. Forestry 2011, 84, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Marshall, P.L.; Davis, G.; LeMay, V.M. Unsing Line Intersect Sampling for Coarse Woody Debris; Technical Report; Forest Research B.C.: Nanaimo, BC, Canada, 2000; p. 34. [Google Scholar]
- Woldendorp, G.; Keenan, R.; Barry, S.; Spencer, R. Analysis of sampling methods for coarse woody debris. For. Ecol. Manag. 2004, 198, 133–148. [Google Scholar] [CrossRef]
- Warren, W.G.; Olsen, P.F. A line-intersect technique for assessing logging waste. For. Sci. 1964, 10, 267–276. [Google Scholar]
- Van Wagner, C.E. The line-intersect method in forest fuel sampling. For. Sci. 1968, 14, 20–26. [Google Scholar]
- de Vris, P.G. A General Theory on Line Intersect Sampling with Application to Logging Residue Inventory; Wageningen University & Research: Wageningen, The Netherlands, 1973; p. 24. [Google Scholar]
- Brown, J.K. Handbook for Inventorying Downed Woody Material; Rep, G.T., Ed.; Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, U.S. Dept. of Agriculture: Ogden, Utah, 1974; p. 24.
- Hazard, J.W.; Pickford, S.G. Simulation studies on line intersect sampling of forest residue, part II. For. Sci. 1986, 32, 447–470. [Google Scholar]
- Bell, G.; Kerr, A.; McNickle, D.; Woollons, R. Accuracy of the line intersect method of post-logging sampling under orientation bias. For. Ecol. Manag. 1996, 84, 23–28. [Google Scholar] [CrossRef]
- Kaiser, L. Unbiased estimation in lineintersect sampling. Biometrics 1983, 39, 965–976. [Google Scholar] [CrossRef]
- Campbell, J.L.; Green, M.B.; Yanai, R.D.; Woodall, C.W.; Fraver, S.; Harmon, M.E.; Hatfield, M.A.; Barnett, C.J.; See, C.R.; Domke, G.M. Estimating uncertainty in the volume and carbon storage of downed coarse woody debris. Ecol. Appl. 2018, 29, e01844. [Google Scholar] [CrossRef]
- Woodall, C.; Williams, M. Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program. In Sampling Protocol, Estimation, and Analysis Procedures for the Down Woody Materials Indicator of the FIA Program; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2005; Volume 256, p. 56. [Google Scholar]
- Dalmasso, M.; Derrière, N.; Wurpillot, S. Les Données de l’inventaire Forestier: État Des. Lieux Et Évolution, in IF—La Feuille de l’Inventaire Forestier; IGN: Saint-Mandé, France, 2014; p. 17. [Google Scholar]
- Meier, C. TOS Protocol and Procedure: Coarse Downed Wood; National Ecological Observatory Network: Boulder, CO, USA, 2015; p. 51. [Google Scholar]
- Winter, S.; Chirici, G.; McRoberts, R.E.; Hauk, E.; Tomppo, E. Possibilities for harmonizing national forest inventory data for use in forest biodiversity assessments. Forestry 2008, 81, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Herrero, C.; Monleon, V.J.; Gómez, N.; Bravo, F. Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory. For. Syst. 2016, 25, e069. [Google Scholar] [CrossRef] [Green Version]
- Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, C. Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 2011, 11, 1027–1039. [Google Scholar] [CrossRef]
- Bate, L.J.; Torgersen, T.R.; Wisdom, M.J.; Garton, E.O. Performance of sampling methods to estimate log characteristics for wildlife. For. Ecol. Manag. 2004, 199, 83–102. [Google Scholar] [CrossRef]
- Fraver, S.; Ducey, M.J.; Woodall, C.W.; D’Amato, A.W.; Milo, A.M.; Palik, B.J. Influence of transect length and downed woody debris abundance on precision of the line-intersect sampling method. For. Ecosyst. 2018, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.O.; Ward, F.R. Measurement of Logging Residue—Alternative Application of the Line Intersect Method; USDA Forest Service Research Note, PNW-183, Forest Service; U.S. Department of Agriculture: Portland, OR, USA, 1972.
- Delisle, G.P.; Woodard, P.M.; Titus, S.J.; Johnson, A.F. Sample size and variability of fuel weight estimates in natural stands of lodgepole pine. Can. J. For. Res. 1988, 18, 649–652. [Google Scholar] [CrossRef]
- Bate, L.J.; Torgersen, T.R.; Wisdom, M.J.; Garton, E.O. Biased estimation of forest log characteristics using intersect diameters. For. Ecol. Manag. 2009, 258, 635–640. [Google Scholar] [CrossRef]
- Affleck, D.L. A line intersect distance sampling strategy for downed wood inventory. Can. J. For. Res. 2008, 38, 2262–2273. [Google Scholar] [CrossRef]
- Gove, J.H.; Ducey, M.J.; Valentine, H.T.; Williams, M.S. A distance limited method for sampling downed coarse woody debris. For. Ecol. Manag. 2012, 282, 53–62. [Google Scholar] [CrossRef]
- Fritts, S.; Moorman, C.; Hazel, D.; Jackson, B. Biomass Harvesting Guidelines affect downed woody debris retention. Biomass- Bioenergy 2014, 70, 382–391. [Google Scholar] [CrossRef]
- van Wagner, C.E. Practical Aspects of the Line Intersect Method; Petawawa National Forestry Institute, Canadian Forestry Service: Victoria, ON, Canada, 1982; p. 11. [Google Scholar]
- Caza, C.L. Woody Debris in the Forests of British Columbia: A Review of Literature and Current Research; Columbia, B., Ed.; Ministery of Forests, Research Branch: Victoria, Australia, 1993.
- Waddell, K.L. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol. Indic. 2002, 1, 139–153. [Google Scholar] [CrossRef]
Method | Fine Wood Volume, m3 ha−1 (Mean ± SD) | |
---|---|---|
Test Zone | Pilot Stand | |
Reference strip | 2.06 ± 0.52 | |
FAS | 2.27 ± 0.87 | 5.98 |
LIS | 1.34 ± 0.70 | 6.30 |
Statistical test | ANOVA | Paired t-test |
Degree of freedom | 2 | |
Statistic | F = 1.42 | T = 0.34 |
p-value | 0.31 | 0.73 |
Pilot Stand | Test Zone | ||||
---|---|---|---|---|---|
FAS | LIS | Strip | FAS | LIS | |
n | 23 | 23 | 3 | 80 | 150 |
Plot size | 0.49 m2 | 0.5 m | 25 m2 | 0.49 m2 | 0.7 m |
Set up, min | 240 | 240 | - | - | - |
Fieldwork, min | 304.8 | 56.4 | 1320 | 1380 | 132 |
Lab measurements, min | 180 | 240 | - | - | - |
TOTAL, min | 724.8 | 536.4 | |||
TOTAL, hours | 12.1 | 8.9 | 22 | 23 | 2.2 |
Time for one sample, min | 32 | 23 | 440 | 17.3 | 0.9 |
Plot Size | Fine Wood Biomass, t ha−1 (Mean ± SD) | ||
---|---|---|---|
Test Zone | Pilot Stand | ||
FAS | LIS | LIS | |
Simple | 2.2 ± 1.8 | 1.3 ± 0.6 | 1.8 ± 1.7 |
Double | 2.2 ± 1.4 | 1.3 ± 0.6 | 1.5 ± 0.7 |
Statistical test | Anova | Anova | Anova |
degree of freedom | 1 | 1 | 1 |
Statistic F | <0.01 | <0.01 | 0.25 |
p-value | 0.99 | 0.99 | 0.62 |
Diameter Used | Volume, m3 ha−1 | Density Used | Biomass, t ha−1 | ||||
---|---|---|---|---|---|---|---|
Measurements for all pieces | 6.0 | ±6.7 | Measurements for all pieces | 2.4 | ±2.4 | ||
Transect mean (min = 0.405, max = 0.774) | 3.2 | ±3.5 | (+33%) | ||||
Site mean (0.552) | 3.3 | ±3.7 | (+38%) | ||||
Site median (0.532) | 3.2 | ±3.6 | (+33%) | ||||
Mean for smaller pieces (0.603 for pieces < 0.5 cm and measured density for the larger pieces) | 2.5 | ±2.4 | (+4%) | ||||
Transect mean (Mean min = 0.20 cm, Mean max = 1.05 cm) | 3.9 | ±4.2 | (−35%) | ||||
Site mean (0.46 cm) | 3.8 | ±2.1 | (−37%) | ||||
Mean for smaller pieces (0.25 cm for pieces < 0.5 cm and measurements for larger pieces) | 8.3 | ±7.0 | (+38%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korboulewsky, N.; Bilger, I.; Bessaad, A. How to Evaluate Downed Fine Woody Debris Including Logging Residues? Forests 2021, 12, 881. https://doi.org/10.3390/f12070881
Korboulewsky N, Bilger I, Bessaad A. How to Evaluate Downed Fine Woody Debris Including Logging Residues? Forests. 2021; 12(7):881. https://doi.org/10.3390/f12070881
Chicago/Turabian StyleKorboulewsky, Nathalie, Isabelle Bilger, and Abdelwahab Bessaad. 2021. "How to Evaluate Downed Fine Woody Debris Including Logging Residues?" Forests 12, no. 7: 881. https://doi.org/10.3390/f12070881
APA StyleKorboulewsky, N., Bilger, I., & Bessaad, A. (2021). How to Evaluate Downed Fine Woody Debris Including Logging Residues? Forests, 12(7), 881. https://doi.org/10.3390/f12070881