Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes
Abstract
:1. Introduction
“A single number is not a big enough concept to communicate the idea of risk. It takes a whole curve.”[1]
2. Materials and Methods
2.1. Study Area
2.2. Historical Wildfire Data
2.3. Simulated Wildfire Data
2.4. Building Exposure
2.5. Exposure Source
2.6. Exposure Metric Comparison
3. Results
3.1. What Were the Magnitudes and Sizes of Simulated Disasters and How Did They Compare to Historical Events?
3.2. Which Communities Have Experienced Historical Exposure, and Which Communities Are Vulnerable to Plausible Future Disasters?
3.3. What Is the Source of Simulated Community Disaster Exposure?
3.4. How Does Maximum Simulated Exposure Compare to Other More Common Risk Assessment Metrics Derived from Simulations?
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, S.; Garrick, B.J. On the quantitative definition of risk. Risk Anal. 1981, 1, 11–27. [Google Scholar] [CrossRef]
- Ager, A.A.; Barros, A.M.G.; Preisler, H.K.; Day, M.A.; Spies, T.A.; Bailey, J.D.; Bolte, J.P. Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy. Ecol. Soc. 2017, 22, 12–28. [Google Scholar] [CrossRef]
- Calkin, D.E.; Cohen, J.D.; Finney, M.A.; Thompson, M.P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl. Acad. Sci. USA 2014, 111, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, C.J.; O’Connor, C.D.; Abrams, J.; Thompson, M.P.; Calkin, D.E.; Johnston, J.D.; Stratton, R.; Gilbertson-Day, J. Wildfire risk science facilitates adaptation of fire-prone social-ecological systems to the new fire reality. Environ. Res. Lett. 2020, 15, 025001. [Google Scholar] [CrossRef]
- Dunn, C.J.; Calkin, D.E.; Thompson, M.P. Towards enhanced risk management: Planning, decision making and monitoring of US wildfire response. Int. J. Wildland Fire 2017, 26, 551. [Google Scholar] [CrossRef] [Green Version]
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- Thompson, M.P.; Ager, A.A.; Finney, M.A.; Calkin, D.E.; Vaillant, N.M. The science and opportuity of wildfire risk assessment. In Novel Approaches and Their Applications in Risk Assessment; InTech: New York, NY, USA, 2012; pp. 99–120. [Google Scholar]
- United States Government Accountability Office. Wildland Fire Management: Better Information and a Systematic Process could Improve Agencies’ Approach to Allocating Fuel Reduction Funds and Selecting Projects. No. GAO-07-1168; United States Government Accountability Office: Washington, DC, USA, 2007.
- Scott, J.H.; Thompson, M.P.; Calkin, D.E. A Wildfire Risk Assessment Framework Forest Land and Resource Management; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2013.
- Thompson, M.; Bowden, P.; Brough, A.; Scott, J.; Gilbertson-Day, J.; Taylor, A.; Anderson, J.; Haas, J. Application of Wildfire Risk Assessment Results to Wildfire Response Planning in the Southern Sierra Nevada, California, USA. Forests 2016, 7, 64. [Google Scholar] [CrossRef]
- Aven, T. The risk concept—historical and recent development trends. Reliab. Eng. Syst. Saf. 2012, 99, 33–44. [Google Scholar] [CrossRef]
- Slovic, P. Perception of risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Merz, B.; Elmer, F.; Thieken, A.H. Significance of “high probability/low damage” versus “low probability/high damage” flood events. Nat. Hazards Earth Syst. Sci. 2009, 9, 1033–1046. [Google Scholar] [CrossRef]
- Knoblauch, T.A.K.; Stauffacher, M.; Trutnevyte, E. Communicating Low-Probability High-Consequence Risk, Uncertainty and Expert Confidence: Induced Seismicity of Deep Geothermal Energy and Shale Gas: Communicating LPHC Risk, Uncertainty and Expert Confidence. Risk Anal. 2018, 38, 694–709. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, P.; Wright, G. The limits of forecasting methods in anticipating rare events. Technol. Forecast. Soc. Chang. 2010, 77, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Aven, T.; Krohn, B.S. A new perspective on how to understand, assess and manage risk and the unforeseen. Reliab. Eng. Syst. Saf. 2014, 121, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Etkin, D.A.; Mamuji, A.A.; Clarke, L. Disaster Risk Analysis Part 1: The Importance of Including Rare Events. J. Homel. Secur. Emerg. Manag. 2018, 15, 20170007. [Google Scholar] [CrossRef]
- Ellingwood, B.R.; Wen, Y.-K. Risk-benefit-based design decisions for low-probability/high consequence earthquake events in Mid-America. Prog. Struct. Engng. Mater. 2005, 7, 56–70. [Google Scholar] [CrossRef]
- Kunreuther, H. Improving the National Flood Insurance Program. In Behavioural Public Policy; Published online by Cambridge University Press: Cambridge, UK, 2018; pp. 1–15. [Google Scholar]
- Merz, B.; Vorogushyn, S.; Lall, U.; Viglione, A.; Blöschl, G. Charting unknown waters-On the role of surprise in flood risk assessment and management: CHARTING UNKNOWN WATERS. Water Resour. Res. 2015, 51, 6399–6416. [Google Scholar] [CrossRef] [Green Version]
- Sachs, M.K.; Yoder, M.R.; Turcotte, D.L.; Rundle, J.B.; Malamud, B.D. Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and SOC models. Eur. Phys. J. Spec. Top. 2012, 205, 167–182. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef] [PubMed]
- Donato, D.C.; Halofsky, J.S.; Reilly, M.J. Corralling a black swan: Natural range of variation in a forest landscape driven by rare, extreme events. Ecol. Appl. 2020, 30, e02013. [Google Scholar] [CrossRef]
- Moritz, M.A. Analyzing extreme disturbance events: Fire in Los Padres National Forest. Ecol. Appl. 1997, 7, 1252–1262. [Google Scholar] [CrossRef]
- Strauss, D.; Bednar, L.; Mees, R. Do One Percent of the Forest Fires Cause Ninety-Nine Percent of the Damage? For. Sci. 1989, 35, 319–328. [Google Scholar]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.; Delogu, G.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Manstetten, R.; Proops, J.L.R. Humankind and the Environment: An Anatomy of Surprise and Ignorance. Environ. Values 1992, 1, 217–241. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S. Surprise for Science, Resilience for Ecosystems, and Incentives for People. Ecol. Appl. 1996, 6, 733–735. [Google Scholar] [CrossRef]
- Kates, R.W.; Clark, W.C. Environmental Surprise: Expecting the Unexpected? Environ. Sci. Policy Sustain. Dev. 1996, 38, 6–34. [Google Scholar] [CrossRef]
- Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993; ISBN 1-55963-229-1. [Google Scholar]
- Gilbertson-Day, J.; Stratton, R.D.; Scott, J.H.; Vogler, K.C.; Brough, A. Pacific Northwest Quantitative Wildfire Risk Assessment: Methods and Results; Pyrologix: Missoula, MT, USA, 2018. [Google Scholar]
- Keane, R.E.; Agee, J.K.; Fulé, P.; Keeley, J.E.; Key, C.; Kitchen, S.G.; Miller, R.; Schulte, L.A. Ecological effects of large fires on US landscapes: Benefit or catastrophe? Int. J. Wildland Fire 2008, 17, 696. [Google Scholar] [CrossRef]
- Spies, T.A.; Stine, P.A.; Gravenmier, R.; Long, J.W.; Reilly, M.J.; Technical Coordinators. Synthesis of Science to Inform Land Management Within the Northwest Forest Plan Area; U.S. Department of Agriculture, Forest Service: Missoula, MT, USA; Pacific Northwest Research Station: Corvallis, OR, USA, 2018.
- Halofsky, J.S.; Donato, D.C.; Franklin, J.F.; Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. The nature of the beast: Examining climate adaptation options in forests with stand-replacing fire regimes. Ecosphere 2018, 9, e02140. [Google Scholar] [CrossRef]
- Weisberg, P.J.; Swanson, F.J. Regional synchroneity in fire regimes of western Oregon and Washington, USA. For. Ecol. Manag. 2003, 172, 17–28. [Google Scholar] [CrossRef]
- Reilly, M.J.; Dunn, C.J.; Meigs, G.W.; Spies, T.A.; Kennedy, R.E.; Bailey, J.D.; Briggs, K. Contemporary patterns of fire extent and severity in forest of the Pacific Northwest, USA (1985-2010). Ecosphere 2017, 8, e01695. [Google Scholar] [CrossRef] [Green Version]
- Slovic, P. Trust, Emotion, Sex, Politics, and Science: Surveying the Risk-Assessment Battlefield. Risk Anal. 1999, 19, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Day, M.A.; Ager, A.A.; Ringo, C.; Palaiologou, P. Cross-Boundary Wildfire Transmission in Oregon—A Quantitative Transmission Analysis; U.S. Department of Agriculture, Forest Service, National Fire Danger Support Center: Missoula, MT, USA, 2019.
- Scott, J.H.; Gilbertson-Day, J.W.; Stratton, R.D. Exposure of Human Communities to Wildfire in the Pacific Northwest; Pyrologix: Missoula, MT, USA, 2018; p. 10. [Google Scholar]
- Ager, A.A.; Buonopane, M.; Reger, A.; Finney, M.A. Wildfire Exposure Analysis on the National Forests in the Pacific Northwest, USA. Risk Anal. 2013, 33, 1000–1020. [Google Scholar] [CrossRef]
- Hulse, D.; Branscomb, A.; Enright, C.; Johnson, B.; Evers, C.; Bolte, J.; Ager, A. Anticipating surprise: Using agent-based alternative futures simulation modeling to identify and map surprising fires in the Willamette Valley, Oregon USA. Landsc. Urban Plan. 2016, 156, 26–43. [Google Scholar] [CrossRef]
- Stephens, S.L.; Burrows, N.; Buyantuyev, A.; Gray, R.W.; Keane, R.E.; Kubian, R.; Liu, S.; Seijo, F.; Shu, L.; Tolhurst, K.G.; et al. Temperate and boreal Forest mega-fires: Characteristics and challenges. Front. Ecol. Environ. 2014, 12, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Whitlock, C.; McWethy, D.B.; Tepley, A.J.; Veblen, T.T.; Holz, A.; McGlone, M.S.; Perry, G.L.W.; Wilmshurst, J.M.; Wood, S.W. Past and Present Vulnerability of Closed-Canopy Temperate Forests to Altered Fire Regimes: A Comparison of the Pacific Northwest, New Zealand, and Patagonia. BioScience 2015, 65, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Cumming, S g. A parametric model of the fire-size distribution. Can. J. For. Res. 2001, 31, 1297. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhuang, Q. Extreme value analysis of wildfires in Canadian boreal forest ecosystems. Can. J. For. Res. 2011, 41, 1836–1851. [Google Scholar] [CrossRef]
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C.; Riley, K.L.; Short, K.C. A simulation of probabilistic wildfire risk components for the continental United States. Stoch. Environ. Res. Risk Assess 2011, 25, 973–1000. [Google Scholar] [CrossRef] [Green Version]
- Parisien, M.A.; Kafka, V.G.; Hirsch, K.G.; Todd, J.B.; Lavoie, S.G.; Maczek, P.D. Mapping Wildfire Susceptibility with the Burn-P3 Simulation Model; Canadian Forest Service Northern Forest Centre: Edmonton, AB, Canada, 2005.
- Microsoft. Computer Generated Building Footprints for the United States GitHub Repository. 2018. Available online: https://github.com/microsoft/USBuildingFootprints (accessed on 15 January 2021).
- Short, K.C.; Gren, I.C.; Riley, K.L.; Vogler, K.C. Pyromes of the Coterminus United States; Forest Service Research Data Archive: Fort Collins, CO, USA, 2020.
- U.S. Environmental Protection Agency. Level III Ecoregions of the Continental United States (Revision of Omernik, 1987); U.S. Environmental Protection Agency: Washington, DC, USA, 2003.
- Dye, A.W.; Rastogi, B.; Clemesha, R.E.S.; Kim, J.B.; Samelson, R.M.; Still, C.J.; Williams, A.P. Spatial Patterns and Trends of Summertime Low Cloudiness for the Pacific Northwest, 1996–2017. Geophys. Res. Lett. 2020, 47, e2020GL088121. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef]
- Reilly, M.J.; Halofsky, J.; Raymond, C.; McEvoy, A.; Dye, A.; Zuspan, A.; Donato, D.; Kim, J.; Potter, B.; Davis, R.; et al. Cascadia Burning: Ecological and social perspectves for the historic, but not historically unprecedented, 2020 wildfires in westside Forests of the Pacific Northwest. 2021; manuscript in preparation. [Google Scholar]
- Simpson, M. Modeled Potential Vegetation Zones of Washington and Oregon; USDA Forest Service: Bend, OR, USA, 2013.
- Haugo, R.; Zanger, C.; DeMeo, T.; Ringo, C.; Shlisky, A.; Blankenship, K.; Simpson, M.; Mellen-McLean, K.; Kertis, J.; Stern, M. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. For. Ecol. Manag. 2015, 335, 37–50. [Google Scholar] [CrossRef] [Green Version]
- USDA Forest Service, US Geological Survey. Monitoring Trends in Burn Severity. Burned Area Boundaries Dataset 2021. Available online: https://www.mtbs.gov/direct-download (accessed on 15 January 2021).
- National Interagency Fire Center. National Incident Feature Service 2019. Available online: https://data-nifc.opendata.arcgis.com/datasets/national-incident-feature-service-2019 (accessed on 15 January 2021).
- National Interagency Fire Center. National Incident Feature Service Archive 2020. Available online: https://data-nifc.opendata.arcgis.com/datasets/national-incident-feature-service-archive-2020 (accessed on 15 January 2021).
- Riley, K.; Thompson, M.; Scott, J.; Gilbertson-Day, J. A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies. Resources 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Riley, K.L.; Loehman, R.A. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States. Ecosphere 2016, 7, e01543. [Google Scholar] [CrossRef]
- Scott, J.; Helmbrecht, D.; Thompson, M.P.; Calkin, D.E.; Marcille, K. Probabilistic assessment of wildfire hazard and municipal watershed exposure. Nat. Hazards 2012, 64, 707–728. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, A.; Nielsen-Pincus, M.; Holz, A.; Catalano, A.J.; Gleason, K.E. Projected Impact of Mid-21st Century Climate Change on Wildfire Hazard in a Major Urban Watershed outside Portland, Oregon USA. Fire 2020, 3, 70. [Google Scholar] [CrossRef]
- Andrews, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213. [Google Scholar] [CrossRef]
- Grenfell, I.C.; Finney, M.; Jolly, M. Simulating spatial and temporally related fire weather. In Proceedings of the VI International Conference on Forest Fire Research, Coimbra, Portugal, 15–18 November 2010; Viegas, D.X., Ed.; University of Coimbra: Coimbra, Portugal, 2010. [Google Scholar]
- LANDFIRE 1.4.0 40 Scott and Burgan Fire Behavior Fuel Models Layer 2014. Available online: https://landfire.gov/fbfm40.php (accessed on 1 June 2018).
- LANDFIRE 1.4.0 Canopy Height Layer 2014. Available online: https://www.landfire.gov/fuel.php (accessed on 1 June 2018).
- LANDFIRE 1.4.0 Canopy Base Height Layer 2014. Available online: https://www.landfire.gov/fuel.php (accessed on 1 June 2018).
- LANDFIRE 1.4.0 Canopy Bulk Density Layer 2014. Available online: https://www.landfire.gov/fuel.php (accessed on 1 June 2018).
- LANDFIRE 1.4.0 Canopy Cover Layer 2014. Available online: https://www.landfire.gov/fuel.php (accessed on 1 June 2018).
- LANDFIRE 1.4.0 Aspect Layer 2014. Available online: https://www.landfire.gov/topographic.php (accessed on 1 June 2018).
- LANDFIRE 1.4.0 Elevation Layer 2014. Available online: https://www.landfire.gov/topographic.php (accessed on 1 June 2018).
- LANDFIRE 1.4.0 Slope Layer 2014. Available online: https://www.landfire.gov/topographic.php (accessed on 1 June 2018).
- Short, K.C.; Finney, M.A.; Scott, J.H.; Gilbertson-Day, J.W.; Grenfell, I.C. Spatial Dataset of Probabilistic Wildfire Risk Components for the Conterminous United States, 1st ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2016.
- Caggiano, M.D.; Hawbaker, T.J.; Gannon, B.M.; Hoffman, C.M. Building Loss in WUI Disasters: Evaluating the Core Components of the Wildland–Urban Interface Definition. Fire 2020, 3, 73. [Google Scholar] [CrossRef]
- Bunzel, K.; Ager, A.A.; Day, M.A.; Dillon, G.K. Community zones for assessing wildfire exposure in the United States. Risk Anal. 2021, 38, 2105–2127. [Google Scholar]
- Thompson, M.P.; Gilbertson-Day, J.W.; Scott, J.H. Integrating Pixel- and Polygon-Based Approaches to Wildfire Risk Assessment: Application to a High-Value Watershed on the Pike and San Isabel National Forests, Colorado, USA. Environ. Model. Assess. 2016, 21, 1–15. [Google Scholar] [CrossRef]
- Bureau of Land Management. BLM OR Management Ownership Polygon; Bureau of Land Management: Portland, OR, USA, 2015.
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The Wildland-Urban Interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef] [Green Version]
- USDA Forest Service. Wildfire Risk to Communities; USDA Forest Service: Washington, DC, USA, 2021. Available online: https://wildfirerisk.org/ (accessed on 12 April 2021).
- Lempert, R.J.; Groves, D.G.; Popper, S.W.; Bankes, S.C. A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios. Manag. Sci. 2006, 52, 514–528. [Google Scholar] [CrossRef]
- Lindaas, O.A.; Pettersen, K.A. Risk analysis and Black Swans: Two strategies for de-blackening. J. Risk Res. 2016, 19, 1231–1245. [Google Scholar] [CrossRef]
- Ager, A.A.; Day, M.A.; Alcasena, F.J.; Evers, C.R.; Short, K.C.; Grenfell, I. Predicting Paradise: Modeling future wildfire disasters in the western US. Sci. Total Environ. 2021, 784, 147057. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.R.; Calkin, D.E.; Thompson, M.P. Wildfire Risk Transmission in the Colorado Front Range, USA: Wildfire Risk Transmission. Risk Anal. 2015, 35, 226–240. [Google Scholar] [CrossRef]
- Scott, J.H.; Thompson, M.P.; Gilbertson-Day, J.W. Exploring how alternative mapping approaches influence fireshed assessment and human community exposure to wildfire. GeoJournal 2017, 82, 201–215. [Google Scholar] [CrossRef]
- Clark, A.M.; Rashford, B.S.; McLeod, D.M.; Lieske, S.N.; Coupal, R.H.; Albeke, S.E. The Impact of Residential Development Pattern on Wildland Fire Suppression Expenditures. Land Econ. 2016, 92, 656–678. [Google Scholar] [CrossRef]
- Gude, P.H.; Jones, K.; Rasker, R.; Greenwood, M.C. Evidence for the effect of homes on wildfire suppression costs. Int. J. Wildl. Fire 2013, 22, 537. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Massada, A.B.; Brennan, T.J.; Radeloff, V.C. Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE 2012, 7, e33954. [Google Scholar]
- Ager, A.A.; Day, M.A.; McHugh, C.W.; Short, K.; Gilbertson-Day, J.; Finney, M.A.; Calkin, D.E. Wildfire exposure and fuel management on western US national forests. J. Environ. Manag. 2014, 145, 54–70. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Rupp, D.E.; O’Neill, L.W.; Sadegh, M. Compound Extremes Drive the Western Oregon Wildfires of September 2020. Geophys. Res. Lett. 2021, 48, e2021GL092520. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Juang, C.S.; Williams, A.P.; Kolden, C.A.; Westerling, A.L. Increasing Synchronous Fire Danger in Forests of the Western United States. Geophys. Res. Lett. 2021, 48, e2020GL091377. [Google Scholar] [CrossRef]
- Bednar, L.F.; Mees, R.; Strauss, D. Fire Suppression Effectiveness for Simultaneous Fires: An Examination of Fire Histories. West. J. Appl. For. 1990, 5, 16–19. [Google Scholar] [CrossRef]
- Fried, J.S.; Gilless, J.K.; Spero, J. Analysing initial attack on wildland fires using stochastic simulation. Int. J. Wildl. Fire 2006, 15, 137. [Google Scholar] [CrossRef] [Green Version]
- Short, K.C. Spatial Wildfire Occurrence Data for the United States, 4th ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2017.
- Steelman, T.A.; McCaffrey, S. Best practices in risk and crisis communication: Implications for natural hazards management. Nat. Hazards 2013, 65, 683–705. [Google Scholar] [CrossRef]
- Wachinger, G.; Renn, O.; Begg, C.; Kuhlicke, C. The Risk Perception Paradox-Implications for Governance and Communication of Natural Hazards: The Risk Perception Paradox. Risk Anal. 2013, 33, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Parisien, M.-A.; Dawe, D.A.; Miller, C.; Stockdale, C.A.; Armitage, O.B. Applications of simulation-based burn probability modelling: A review. Int. J. Wildl. Fire 2019, 28, 913. [Google Scholar] [CrossRef] [Green Version]
Fire Name | Year | Area Burned (ha) | Buildings Exposed |
---|---|---|---|
Beachie Creek | 2020 | 78,218 | 1120 |
Holiday Farm | 2020 | 40,031 | 845 |
Echo Mountain Complex | 2020 | 996 | 363 |
Riverside | 2020 | 55,905 | 357 |
Lionshead | 2020 | 74,402 | 309 |
Archie Creek | 2020 | 40,581 | 292 |
Hatchery Complex | 1994 | 11,033 | 258 |
B & B Complex | 2003 | 36,938 | 209 |
Norse Peak | 2017 | 20,645 | 96 |
Chetco Bar | 2017 | 78,860 | 68 |
Source | Portion of Study Area | Total Exposure | Disaster Exposure |
---|---|---|---|
WUI Class | |||
Forest | 77% | 51% | 43% |
Intermix | 9% | 35% | 41% |
Interface | 3% | 8% | 10% |
Non-Vegetated | 10% | 5% | 5% |
Land Manager | |||
Private Non-Industrial | 57% | 82% | 89% |
USFS | 26% | 11% | 2% |
Other Federal | 8% | 2% | 1% |
Local | <1% | <1% | <1% |
Private Industrial | 3% | <1% | <1% |
State | 4% | <1% | <1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McEvoy, A.; Kerns, B.K.; Kim, J.B. Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes. Forests 2021, 12, 934. https://doi.org/10.3390/f12070934
McEvoy A, Kerns BK, Kim JB. Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes. Forests. 2021; 12(7):934. https://doi.org/10.3390/f12070934
Chicago/Turabian StyleMcEvoy, Andy, Becky K. Kerns, and John B. Kim. 2021. "Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes" Forests 12, no. 7: 934. https://doi.org/10.3390/f12070934
APA StyleMcEvoy, A., Kerns, B. K., & Kim, J. B. (2021). Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes. Forests, 12(7), 934. https://doi.org/10.3390/f12070934