Macro- and Micronutrient Contents in Soils of a Chronosequence of Naturally Regenerated Birch Stands on Abandoned Agricultural Lands in Central Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Material Collection
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change—Current and new directions. Landsc. Ecol. 2004, 19, 857–868. [Google Scholar] [CrossRef]
- Hietel, E.; Waldhardt, R.; Otte, A. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landsc. Ecol. 2004, 19, 473–489. [Google Scholar] [CrossRef]
- Behan, J.; McQuinn, K.; Roche, M.J. Rural land use: Traditional agriculture or forestry. Land Econ. 2006, 82, 112–123. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Łowicki, D. Land use changes in Poland during transformation: Case study of Wielkopolska region. Landsc. Urban Plan. 2008, 87, 279–288. [Google Scholar] [CrossRef]
- Ruskule, A.; Nikodemus, O.; Kasparinska, Z.; Kasparinskis, R.; Brūmelis, G. Patterns of afforestation on abandoned agriculture land in Latvia. Agrofor. Syst. 2012, 85, 215–231. [Google Scholar] [CrossRef]
- Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Vares, A.; Tullus, H. Growth development and plant–soil relations in midterm silver birch (Betula pendula Roth) plantations on previous agricultural lands in hemiboreal Estonia. Eur. J. For. Res. 2015, 134. [Google Scholar] [CrossRef]
- Deptuła, M.; Nienartowicz, A.; Iwicka, M.; Filbrandt-Czaja, A. Biomass of Scots pine-silver birch tree stand 25 years after afforestation of former agricultural land. Ecol. Quest. 2017, 25, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Johansson, T. Biomass equations for determining functions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenergy 1999, 16, 223–238. [Google Scholar] [CrossRef]
- Johansson, T. Biomass production and allometric above- and below-ground relations for young birch stands planted at four spacings on abandoned farmland. Forestry 2007, 80, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Varik, M.; Aosaar, J.; Uri, V. Biomass production in silver birch stands in Oxalis site type. For. Stud. 2009, 51, 5–16. [Google Scholar] [CrossRef]
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lõhmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Bijak, S.; Zasada, M.; Bronisz, A.; Bronisz, K.; Czajkowski, M.; Ludwisiak, Ł.; Tomusiak, R.; Wojtan, R. Estimating coarse roots biomass in young silver birch (Betula pendula) stands on post-agricultural lands in central Poland. Silva Fenn. 2013, 47, 1–14. [Google Scholar] [CrossRef]
- Zasada, M. Modelowanie rozkładów pierśnic młodocianych drzewostanów brzozy brodawkowatej na gruntach porolnych za pomocą dwuparametrowego rozkładu Weibulla (Modeling dbh distribution of young silver birch stands on former agricultural lands with the 2-parameter Weibull distribution). Sylwan 2013, 157, 268–277. (In Polish) [Google Scholar]
- Bijak, S.; Bronisz, K.; Szydłowska, P.; Wojtan, R. Wpływ jakości siedliska na dynamikę wydzielania brzozy na gruntach porolnych. Sylwan 2014, 158, 423–430. (In Polish) [Google Scholar]
- Socha, J.; Zasada, M. Zagęszczenie i tempo naturalnego wydzielania w młodocianych drzewostanach brzozowych na gruntach porolnych. Sylwan 2014, 158, 340–351. (In Polish) [Google Scholar]
- Zasada, M.; Bijak, S.; Bronisz, K.; Bronisz, A.; Gawęda, T. Biomass dynamics in young silver birch stands on post-agricultural lands in central Poland. Drewno 2014, 57, 29–39. [Google Scholar]
- Repola, J. Biomass equations for birch in Finland. Silva Fenn. 2008, 42, 605–624. [Google Scholar] [CrossRef] [Green Version]
- Akhtari, S.; Sowlati, T.; Day, K. Economic feasibility of utilizing forest biomass in district energy systems—A review. Renew. Sustain. Energy Rev. 2014, 33, 117–127. [Google Scholar] [CrossRef]
- Lauri, P.; Havlík, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Uri, V.; Vares, A.; Tullus, H.; Kanal, A. Above-ground biomass production and nutrient accumulation in young stands of silver birch on abandoned agricultural land. Biomass Bioenergy 2007, 31, 195–204. [Google Scholar] [CrossRef]
- Uri, V.; Lõhmus, K.; Ostonen, I.; Tullus, H.; Lastik, R.; Vildo, M. Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. Eur. J. For. Res. 2007, 126, 495–506. [Google Scholar] [CrossRef]
- Gawęda, T.; Małek, S.; Zasada, M.; Jagodziński, A.M. Allocation of elements in a chronosequence of silver birch afforested on former agricultural lands. Drewno 2014, 57, 107–118. [Google Scholar]
- Piché, N.; Kelting, D.L. Recovery of soil productivity with forest succession on abandoned agricultural land. Restor. Ecol. 2015, 23, 645–654. [Google Scholar] [CrossRef]
- Aosaar, J.; Mander, Ü.; Varik, M.; Becker, H.; Morozov, G.; Maddison, M.; Uri, V. Biomass production and nitrogen balance of naturally afforested silver birch (Betula pendula Roth.) stand in Estonia. Silva Fenn. 2016, 50, 1–19. [Google Scholar] [CrossRef]
- Gawęda, T.; Błońska, E.; Małek, S.; Bijak, S.; Zasada, M. Zastosowanie ITGL w ocenie gleb porolnych z naturalnym odnowieniem brzozy. Sylwan 2018, 162, 396–402. (In Polish) [Google Scholar]
- Karlsson, A.; Albrektson, A.; Forsgren, A.; Svensson, L. An analysis of successful natural regeneration of downy and silver birch on abandoned farmland in Sweden. Silva Fenn. 1998, 32, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Liepins, K. First-year height growth of silver birch in farmland depending on container stock morphological traits. Balt. For. 2007, 13, 54–60. [Google Scholar]
- Tullus, T.; Tullus, A.; Roosaluste, E.; Kaasik, A.; Lutter, R.; Tullus, H. Understorey vegetation in young naturally regenerated and planted birch (Betula spp.) stands on abandoned agricultural land. New For. 2013, 44, 591–611. [Google Scholar] [CrossRef]
- Flinn, K.M.; Vellend, M. Recovery of forest plant communities in post-agricultural landscapes. Front. Ecol. Environ. 2005, 3, 243–250. [Google Scholar] [CrossRef]
- Rūsiņa, S.; Bambe, B.; Daugaviete, M. Changes in ground vegetation of arable lands under afforestation in Latvia. Balt. For. 2011, 17, 243–255. [Google Scholar]
- Jõgiste, K.; Vares, A.; Sendrós, M. Restoration of former agricultural fields in Estonia: Comparative growth of planted and naturally regenerated birch. Forestry 2003, 76, 209–219. [Google Scholar] [CrossRef]
- Prach, K.; Pyšek, P. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol. Eng. 2001, 17, 55–62. [Google Scholar] [CrossRef]
- Bernadzki, E. Koncepcje hodowli lasu na gruntach porolnych. Sylwan 1990, 134, 51–59. (In Polish) [Google Scholar]
- Jakubowski, G.; Sobczak, R. Możliwości intensywnej uprawy sosny i brzozy na gruntach porolnych. Pr. Inst. Badaw. Leśnictwa 1999, 878, 61–93. (In Polish) [Google Scholar]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth. and Betula pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Cameron, A.D. Managing birch woodlands for the production of quality timber. Forestry 1996, 69, 357–371. [Google Scholar] [CrossRef]
- Bernadzki, E.; Kowalski, M. Brzoza na gruntach porolnych. Sylwan 1983, 127, 33–42. (In Polish) [Google Scholar]
- Kund, M.; Vares, A.; Sims, A.; Tullus, H.; Uri, V. Early growth and development of silver birch (Betula pendula Roth.) plantations on abandoned agricultural land. Eur. J. For. Res. 2010, 129, 679–688. [Google Scholar] [CrossRef]
- Piasta, A.; Skorupski, M.; Pastwik, E.; Zasada, M. Change of Mesostigmata mite fauna caused by silver birch (Betula pendula Roth.) secondary natural succession on agricultural fields. In Science for Sustainability, Proceedings of the International Scientific Conference for PhD Students, Győr, Hungary, 19–20 March 2013; Neményi, M., Varga, L., Facskó, F., Lőrincz, I., Eds.; University of West Hungary Press: Sopron, Hungary, 2013; pp. 160–166. [Google Scholar]
- Alriksson, A.; Olsson, M.T. Soil changes in different age classes of Norway spruce (Picea abies (L.) Karst.) on afforested farmland. Plant Soil 1995, 168–169, 103–110. [Google Scholar] [CrossRef]
- Vesterdal, L.; Ritter, E.; Gundersen, P. Change in soil organic carbon following afforestation of former arable land. For. Ecol. Manag. 2002, 169, 137–147. [Google Scholar] [CrossRef]
- Ritter, E.; Vesterdal, L.; Gundersen, P. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil 2003, 249, 319–330. [Google Scholar] [CrossRef]
- Hagen-Thorn, A.; Callesen, I.; Armolaitis, K.; Nihlgård, B. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag. 2004, 195, 373–384. [Google Scholar] [CrossRef]
- Podrázský, V.; Remeš1, J.; Hart, V.; Keith Moser, W. Production and humus form development in forest stands established on agricultural lands—Kostelec nad Černými lesy region. J. For. Sci. 2009, 55, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Kupka, I.; Podrázský, V. Species composition effects of forest stands on afforested agricultural land on the soil properties. Sci. Agric. Bohem. 2011, 42, 19–23. [Google Scholar]
- Wall, A.; Hytönen, J. Soil fertility of afforested arable land compared to continuously. Plant Soil 2005, 275, 247–260. [Google Scholar] [CrossRef]
- Smal, H.; Olszewska, M. The effect of afforestation with Scots pine (Pinus sylvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant Soil 2008, 305, 171–187. [Google Scholar] [CrossRef]
- Stone, M.M.; DeForest, J.L.; Plante, A.F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luguillo Critical Zone Observatory. Soil Biol. Biochem. 2014, 75, 237–247. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Rocha Vasconcelos da Silva, G.; Vanguelova, E.; Ashwood, F.; Tibbett, M.; Watts, K.; Lukac, M. Soil organic matter stabilization and carbon-cycling enzyme activity are affected by land management. Ann. For. Res. 2020, 63, 71–86. [Google Scholar]
- Martyn, D. Klimaty Kuli Ziemskiej (Climates of the Earth); PWN: Warszawa, Poland, 2000. [Google Scholar]
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2015, 106, 192. [Google Scholar]
- Gawęda, T.; Błońska, E.; Małek, S. Soil organic carbon accumulation in post-agricultural soils under the influence birch stands. Sustainability 2019, 11, 4300. [Google Scholar] [CrossRef] [Green Version]
- Šarapatka, B. The Contribution of Czech Soil Science at the Turn of the 19th and 20th Centuries to Knowledge of Soils: In Memory of Professor Josef Kopecký. Soil Water Res. 2015, 10, 207–209. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Metody Analizy I Oceny Właściwości Gleb I Roślin; Instytut Ochrony Środowiska: Warszawa, Poland, 1991; ISBN 83-85805-69-9. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows; Version 22.0; IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Tuszyński, M. Properties of post-agricultural soils and forest economy. Sylwan 1990, 134, 41–49. [Google Scholar]
- Reynolds, B.; Neal, C.; Hornung, M.; Hughes, S.; Stevens, P.A. Impact of afforestation on the soil solution chemistry of stagnopodzols in mid-Wales. Water Air Soil Pollut. 1988, 38, 55–70. [Google Scholar]
- Strobel, B.W.; Hansen, H.C.B.; Borggaard, O.K.; Andersen, M.K.; Raulund-Rasmussen, K. Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry 2001, 56, 1–26. [Google Scholar] [CrossRef]
- Hooker, T.D.; Compton, J.E. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 2003, 13, 299–313. [Google Scholar] [CrossRef]
- Olszewska, M.; Smal, H. The effect of afforestation with Scots pine (Pinus sylvestris L.) of sandy post-arable soils on their selected properties. I. Physical and sorptive properties. Plant Soil 2008, 305, 157–169. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, C.A.; Thomas, N.; Robinson, L.; Tate, K.R.; Ross, D.J.; Dando, J.; Singh, B.K. Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biol. Biochem. 2009, 41, 1642–1651. [Google Scholar] [CrossRef]
- Zhang, K.; Dang, H.; Tan, S.; Wang, Z.; Zhang, Q. Vegetation community and soil characteristics of abandoned agricultural land and pine plantation in the Qinling Mountains, China. For. Ecol. Manag. 2010, 259, 2036–2047. [Google Scholar] [CrossRef]
- Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R.; Fernández-Núñez, E. Afforestation of agricultural land with Pinus radiata D. Don and Betula alba L. in NW Spain: Effects on soil pH, understorey production and floristic diversity eleven years after establishment. Land Degrad. Dev. 2012, 23, 227–241. [Google Scholar] [CrossRef]
- Łętowska, A.; Strączyńska, S. Wybrane właściwości fizykochemiczne i chemiczne gleb odłogowanych i użytkowanych rolniczo. Zesz. Probl. Postępów Nauk. Rol. 2001, 478, 241–248. (In Polish) [Google Scholar]
- Strączyńska, S.; Zawieja, J. Zmiana fitocenozy i niektórych właściwości gleby pod wpływem jej wieloletniego odłogowania. Zesz. Probl. Postępów Nauk. Rol. 2001, 478, 327–333. (In Polish) [Google Scholar]
- Smal, H.; Ligęza, S.; Olszewska, M. Zmiany właściwości gleb lekkich porolnych pod wpływem zalesienia sosną (wstępne wyniki badań). Zesz. Probl. Postępów Nauk. Rol. 2003, 493, 491–498. (In Polish) [Google Scholar]
- Smal, H.; Ligęza, S.; Olszewska, M. Wpływ zalesienia piaszczystych gleb porolnych na jakość materii organicznej i skład chemiczny roztworu glebowego. Rocz. Glebozn. 2004, 55, 139–148. (In Polish) [Google Scholar]
- Brożek, S.; Zwydak, M. Atlas Gleb Leśnych Polski; CILP: Warszawa, Poland, 2010. (In Polish) [Google Scholar]
- Podrázský, V.V.; Ulbrichová, I. Restoration of forest soils on reforested abandoned agricultural lands. J. For. Sci. 2004, 50, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Morozov, G.; Karoles, K. Ecosystems carbon budgets of differently aged downy birch stands growing on well-drained peatlands. For. Ecol. Manag. 2017, 399, 82–93. [Google Scholar] [CrossRef]
- Varik, M.; Aosaar, J.; Ostonen, I.; Lõhmus, K.; Uri, V. Carbon and nitrogen accumulation in belowground tree biomass in a chronosequence of silver birch stands. For. Ecol. Manag. 2013, 302, 62–70. [Google Scholar] [CrossRef]
Location | Age of Stands (Years) | Soil pH Range | N/ha | D1.3 (cm) | H (m) | V (m3/ha) | |
---|---|---|---|---|---|---|---|
Dobieszyn 1 | 51°35′ N. 21°10′ E | 2–13 | 4.5–5.5 | 12,500–1,555,556 | 0.20–5.32 | 0.15–7.67 | 0.6068–145.1203 |
Dobieszyn 2 | 51°33′ N. 21°09′ E | 4–12 | 4.5–5.5 | 3964–395,000 | 0.36–7.47 | 0.81–10.10 | 1.5270–94.0797 |
Siedlce | 52°03′ N. 21°56′ E | 4–10 | <4.5 | 2926–92,702 | 0.56–6.43 | 1.66–8.40 | 6.9162–77.4781 |
Kozienice | 51°24′ N. 21°26′ E | 4–13 | 4.5–5.5 | 6293–81,624 | 0.24–7.10 | 1.24–10.50 | 0.7856–149.1231 |
Łochów 1 | 52°34′ N. 22°02′ E | 4–16 | <4.5 | 7632–46,585 | 1.15–5.84 | 2.07–10.44 | 25.4733–119.6174 |
Łochów 2 | 52°34′ N. 22°01′ E | 4–17 | <4.5 | 3200–86,667 | 0.98–7.99 | 2.17–12.39 | 33.1971–113.8394 |
Kampinos | 52°21′ N. 20°43′ E | 3–12 | 4.5–5.5 | 2987–198,095 | 0.22–8.35 | 0.47–10.65 | 0.6569–153.7627 |
Age Class | Na | K | Ca | Mg | ||||
---|---|---|---|---|---|---|---|---|
M | SE | M | SE | M | SE | M | SE | |
0–5 cm | ||||||||
I | 39.93 | 4.40 | 428.50 | 101.77 | 438.75 | 58.87 | 277.50 | 47.51 |
II | 50.90 | 7.30 | 438.83 | 107.80 | 427.83 | 48.42 | 272.17 | 50.08 |
III | 49.98 | 6.80 | 478.33 | 108.92 | 382.78 | 50.73 | 299.22 | 53.61 |
IV | 42.56 | 8.05 | 531.60 | 92.49 | 462.40 | 111.36 | 380.20 | 76.77 |
5–15 cm | ||||||||
I | 46.13 | 7.66 | 520.13 | 118.89 | 525.50 | 85.41 | 309.38 | 58.50 |
II | 50.77 | 7.41 | 431.83 | 124.94 | 389.00 | 53.01 | 275.50 | 53.16 |
III | 47.03 | 6.19 | 491.67 | 99.40 | 376.56 | 50.29 | 312.11 | 54.37 |
IV | 42.14 | 7.57 | 482.20 | 68.01 | 355.40 | 54.32 | 362.40 | 73.26 |
15–30 cm | ||||||||
I | 52.16 | 9.70 | 569.13 | 106.46 | 477.13 | 55.63 | 392.63 | 67.82 |
II | 45.45 | 6.67 | 335.17 | 86.26 | 345.17 | 47.50 | 256.17 | 26.27 |
III | 39.69 | 4.34 | 431.22 | 90.11 | 355.56 | 55.70 | 322.67 | 62.46 |
IV | 44.20 | 7.30 | 476.60 | 36.03 | 354.60 | 28.35 | 423.80 | 98.11 |
A | 0.828 | 0.645 | 0.087 | 0.193 | ||||
D | 0.975 | 0.931 | 0.597 | 0.607 | ||||
A × D | 0.750 | 0.934 | 0.839 | 0.958 |
Age Class | Na | K | Ca | Mg | ||||
---|---|---|---|---|---|---|---|---|
M | SE | M | SE | M | SE | M | SE | |
I | 192.99 | 32.91 | 2090.7 | 403.4 | 1933.6 | 268.9 | 1373.9 | 226.9 |
II | 186.65 | 23.41 | 1438.4 | 340.8 | 1447.7 | 165.8 | 1029.4 | 114.6 |
III | 173.15 | 18.17 | 1805.1 | 342.7 | 1460.0 | 200.8 | 1251.3 | 211.8 |
IV | 158.06 | 21.95 | 1792.3 | 177.7 | 1363.4 | 168.9 | 1467.7 | 319.3 |
A | 0.936 | 0.740 | 0.632 | 0.617 |
Age Class | Cu | Zn | Mn | Fe | ||||
---|---|---|---|---|---|---|---|---|
M | SE | M | SE | M | SE | M | SE | |
0–5 cm | ||||||||
I | 2.28 | 0.33 | 11.19 | 0.86 | 41.29 | 15.01 | 2451.63 | 428.02 |
II | 1.88 | 0.24 | 12.22 | 2.09 | 68.43 | 24.04 | 2740.17 | 549.63 |
III | 2.03 | 0.35 | 12.52 | 1.83 | 74.24 | 21.98 | 2905.44 | 426.27 |
IV | 2.42 | 0.26 | 15.80 | 2.66 | 42.58 | 11.72 | 3158.80 | 714.36 |
5–15 cm | ||||||||
I | 3.05 | 0.72 | 11.38 | 0.91 | 49.78 | 17.68 | 2746.63 | 514.31 |
II | 1.85 | 0.33 | 11.78 | 1.51 | 65.52 | 26.88 | 2824.50 | 548.99 |
III | 1.66 | 0.31 | 11.08 | 1.32 | 76.13 | 22.35 | 2954.89 | 399.07 |
IV | 2.14 | 0.07 | 13.29 | 2.85 | 83.86 | 37.24 | 3291.80 | 587.10 |
15–30 cm | ||||||||
I | 1.54 | 0.38 | 10.71 | 1.26 | 62.30 | 21.58 | 3273.38 | 529.57 |
II | 1.08 | 0.29 | 8.07 | 0.60 | 49.02 | 12.14 | 2399.67 | 550.71 |
III | 1.17 | 0.28 | 9.20 | 0.95 | 46.00 | 10.64 | 2686.33 | 422.60 |
IV | 2.06 | 0.20 | 13.03 | 1.42 | 71.88 | 23.32 | 3191.00 | 444.20 |
A | 0.034 * | 0.059 | 0.786 | 0.678 | ||||
D | 0.013 * | 0.051 | 0.665 | 0.928 | ||||
A × D | 0.554 | 0.862 | 0.752 | 0.920 |
Age Class | Cu | Zn | Mn | Fe | ||||
---|---|---|---|---|---|---|---|---|
M | SE | M | SE | M | SE | M | SE | |
I | 8.20 | 1.51 | 43.28 | 3.87 | 217.85 | 66.58 | 11,850 | 1952 |
II | 5.73 | 1.08 | 39.51 | 3.71 | 221.86 | 63.04 | 10,208 | 2050 |
III | 5.73 | 1.07 | 41.11 | 4.01 | 251.59 | 60.74 | 11,236 | 1511 |
IV | 7.87 | 0.46 | 49.66 | 6.52 | 259.46 | 90.60 | 11,786 | 1852 |
A | 0.433 | 0.496 | 0.876 | 0.940 |
Age Class | Pb | Cd | Ni | Cr | ||||
---|---|---|---|---|---|---|---|---|
M | SE | M | SE | M | SE | M | SE | |
0–5 cm | ||||||||
I | 8.89 | 0.57 | 0.09 | 0.01 | 1.34 | 0.17 | 4.03 | 0.49 |
II | 8.16 | 0.67 | 0.08 | 0.01 | 1.42 | 0.19 | 4.00 | 0.58 |
III | 9.47 | 1.17 | 0.07 | 0.01 | 1.46 | 0.21 | 4.19 | 0.54 |
IV | 8.07 | 1.14 | 0.07 | 0.01 | 1.99 | 0.44 | 5.27 | 0.62 |
5–15 cm | ||||||||
I | 8.55 | 0.33 | 0.08 | 0.02 | 1.49 | 0.20 | 4.47 | 0.47 |
II | 7.10 | 0.77 | 0.06 | 0.01 | 1.47 | 0.23 | 4.01 | 0.59 |
III | 9.49 | 1.11 | 0.06 | 0.01 | 1.53 | 0.21 | 4.39 | 0.51 |
IV | 9.24 | 0.59 | 0.07 | 0.01 | 2.11 | 0.52 | 5.27 | 0.67 |
15–30 cm | ||||||||
I | 3.82 | 0.69 | 0.04 | 0.02 | 2.64 | 0.59 | 5.34 | 0.58 |
II | 2.34 | 0.23 | 0.03 | 0.01 | 1.96 | 0.30 | 3.52 | 0.63 |
III | 3.41 | 0.60 | 0.03 | 0.01 | 2.17 | 0.42 | 4.15 | 0.66 |
IV | 4.96 | 1.40 | 0.04 | 0.01 | 2.74 | 0.53 | 5.43 | 0.48 |
A | 0.102 | 0.492 | 0.185 | 0.036 * | ||||
D | <0.001 * | <0.001 * | 0.020 * | 0.848 | ||||
A × D | 0.695 | 0.993 | 0.949 | 0.798 |
Age Class | Pb | Cd | Ni | Cr | ||||
---|---|---|---|---|---|---|---|---|
M | SE | M | SE | M | SE | M | SE | |
I | 23.71 | 1.46 | 0.23 | 0.05 | 8.26 | 1.53 | 19.15 | 1.71 |
II | 18.76 | 0.79 | 0.18 | 0.02 | 6.88 | 0.80 | 14.45 | 1.83 |
III | 24.91 | 2.05 | 0.19 | 0.04 | 7.34 | 1.17 | 16.65 | 1.94 |
IV | 24.55 | 2.66 | 0.20 | 0.04 | 8.96 | 1.87 | 19.70 | 1.88 |
A | 0.146 | 0.918 | 0.693 | 0.172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawęda, T.; Małek, S.; Błońska, E.; Jagodziński, A.M.; Bijak, S.; Zasada, M. Macro- and Micronutrient Contents in Soils of a Chronosequence of Naturally Regenerated Birch Stands on Abandoned Agricultural Lands in Central Poland. Forests 2021, 12, 956. https://doi.org/10.3390/f12070956
Gawęda T, Małek S, Błońska E, Jagodziński AM, Bijak S, Zasada M. Macro- and Micronutrient Contents in Soils of a Chronosequence of Naturally Regenerated Birch Stands on Abandoned Agricultural Lands in Central Poland. Forests. 2021; 12(7):956. https://doi.org/10.3390/f12070956
Chicago/Turabian StyleGawęda, Tomasz, Stanisław Małek, Ewa Błońska, Andrzej M. Jagodziński, Szymon Bijak, and Michał Zasada. 2021. "Macro- and Micronutrient Contents in Soils of a Chronosequence of Naturally Regenerated Birch Stands on Abandoned Agricultural Lands in Central Poland" Forests 12, no. 7: 956. https://doi.org/10.3390/f12070956
APA StyleGawęda, T., Małek, S., Błońska, E., Jagodziński, A. M., Bijak, S., & Zasada, M. (2021). Macro- and Micronutrient Contents in Soils of a Chronosequence of Naturally Regenerated Birch Stands on Abandoned Agricultural Lands in Central Poland. Forests, 12(7), 956. https://doi.org/10.3390/f12070956