Predicting Water Supply and Evapotranspiration of Street Trees Using Hydro-Pedo-Transfer Functions (HPTFs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principles of Hydro-Pedo-Transfer Functions (HPTFs)
- Daily climate data—precipitation, wind velocity, mean air temperature, mean air humidity, and net radiation;
- Soil hydraulic functions—soil water retention, unsaturated hydraulic conductivity, and depth to the groundwater table;
- Plant data—degree of soil cover, rooting depth, plant height, and stomata resistance for various soil moisture conditions.
- Four soil textures with plant available water from low to high;
- Deciduous trees;
- Six groundwater table depths (from 0.9 m to 2.8 m deep);
- Sixteen climate stations in Germany.
- Potential FAO grass reference evapotranspiration (=without any water limitation, ET0) according to Allen et al. [25];
- Site-specific annual water supply (Sw).
2.2. Conceptual Approach and Deriving Input Parameters
2.3. Potential Evapotranspiration of Urban Sites (ET0u)
2.4. Soil Available Soil Water in the Effective Root Zone (Wa)
2.5. Predicting Actual Capillary Rise (Qa) from the Groundwater
if Qmax > Qcli, then Qa = Qcli
if Qmax ≤ Qcli, then Qa = Qmax
2.6. Estimating Runoff (Ro)
2.7. Predicting the Actual Evapotranspiration of Street Trees
- (i)
- ETIa/ET0u > 0.8, indicating a good water supply, i.e., no water stress;
- (ii)
- ETIa/ET0u ranges from 0.8 to 0.6, indicating low to medium water stress;
- (iii)
- ETIa/ET0u ranges from 0.6 to 0.4, indicating moderate water-stress conditions;
- (iv)
- ETIa/ET0u < 0.4, indicating high up to severe water stress.
2.8. Predicting the Actual Evapotranspiration of Sealed Areas
3. Field Investigations and Mapping
3.1. Sap-Flow Measurements
3.2. Tree and Site Conditions
3.3. Climate Conditions
3.4. Street-Tree Mapping
4. Results and Discussion
4.1. Sap-Flow Measurements and Actual Evapotranspiration
4.2. Street-Tree Mapping
4.3. Case Studies on Evapotranspiration and Water-Stress Predictions (ETIa/ET0)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaffin, S.R.; Rosenzweig, C.; Kong, A.Y.Y. Adapting to climate change through urban green infrastructure. Nature Clim. Chang. 2012, 2, 704. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Miller, H. IPCC fourth assessment report (AR4). Clim. Change 2007, 374. [Google Scholar]
- Allen, M.; Babiker, M.; Chen, Y.; de Coninck, H.; Connors, S.; van Diemen, R.; Ferrat, M. Summary for policymakers. In Global Warming of 1.5 C: An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emissions Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Southworth, M. Designing the walkable city. J. Urban Plan. Dev. 2005, 131, 246–257. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, G.M.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Randler, P.B.; Greenfield, E.J.; Comas, S.J.; Carr, M.A.; Alig, R.J. Sustaining America’s urban trees and forests: A Forests on the Edge report. Gen. Tech. Rep. 2010. [Google Scholar] [CrossRef] [Green Version]
- Heisler, G.M. Effects of individual trees on the solar-radiation climate of small buildings. Urban Ecol. 1986, 9, 337–359. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Gao, J.X.; Yang, Y. The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Build. Environ. 2014, 76, 37–43. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Shackleton, C. Do indigenous street trees promote more biodiversity than alien ones? Evidence using mistletoes and birds in South Africa. Forests 2016, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.M.; Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 2020, 30, e02149. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G.; Ustin, S.L.; Grismer, M.E.; Simpson, J.R. Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol. Process. 2000, 14, 763–784. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Rahman, M.A.; Armson, D.; Ennos, A.R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 2015, 18, 371–389. [Google Scholar] [CrossRef]
- Nowak, D.J.; Kuroda, M.; Crane, D.E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban For. Urban Green. 2004, 2, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef]
- Von Berlin, A. Drucksache 18 /21 605. Schriftliche Anfrage des Abgeordneten Daniel Buchholz vom 14. November 2019 (Eingang beim Abgeordnetenhaus am 14 November 2019) zum Thema: Berliner Stadtbäume: Droht nach zwei Hitzesommern ein Kahlschlag? Senatsverwaltung von Berlin: Berlin, Germany, 2019. (In German) [Google Scholar]
- Von Berlin, A. Drucksache 18 /21 585. 2019. Schriftliche Anfrage des Abgeordneten Georg P. Kössler (GRÜNE) vom 12. November 2019 (Eingang beim Abgeordnetenhaus am 14. November 2019) zum Thema: Baumbewässerung in Berlin; Senatsverwaltung von Berlin: Berlin, Germany, 2019. (In German) [Google Scholar]
- Department of International Economic, United Nations; Department for Economic, United Nations. Social Information, & Policy Analysis. In World Population Prospects; Department of International, Economic and Social Affairs: New York, NY, USA, 1985. [Google Scholar]
- Wessolek, G.; Duijnisveld, W.H.M.; Trinks, S. Hydro-Pedo-Transfer-Functions (HPTFs) for predicting annual percolation rate on a regional scale. J. Hydrol. 2008, 356, 17–27. [Google Scholar] [CrossRef]
- Rijtema, P.E. On the relation between transpiration, soil physical properties and crop production as a base for water supply plans. Tech. Bull. Inst. Land Water Manag. Res. 1968, 58, 29–35. [Google Scholar]
- Plagge, R. Bestimmung der Ungesättigten Hydraulischen Leitfähigkeit im Boden. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 1991. [Google Scholar]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An update for the definition of reference evapotranspiration. ICID Bull. 1994, 43, 1–34. [Google Scholar]
- Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. Hydrological Atlas of Germany. 2003. Available online: http://www.hydrology.uni-freiburg.de/forsch/had/had_home.htm (accessed on 22 April 2021).
- Schmidt-Walter, P.; Ahrends, B.; Mette, T.; Puhlmann, H.; Meesenburg, H. NFIWADS: The water budget, soil moisture, and drought stress indicator database for the German National Forest Inventory (NFI). Ann. For. Sci. 2019, 76, 39. [Google Scholar] [CrossRef] [Green Version]
- Duthweiler, S.; Pauleit, S.; Rötzer, T.; Moser, A.; Rahman, M.; Stratopoulos, L.; Zölch, T. Untersuchungen zur Trockenheitsverträglichkeit von Stadtbäumen. In Jahrbuch der Baumpflege; Haymarket Media GmbH: Braunschweig, Germany, 2017; pp. 137–154. ISBN 978-3-87815-253-8. (In German) [Google Scholar]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Roloff, A. Stadt- und Straßenbäume der Zukunft—Welche Arten sind geeignet? Forstwiss Beiträge Tharandt 2013, 14, 173–187. (In German) [Google Scholar]
- Renger, M.; Strebel, O. Transport von Wasser und Nährstoffen an die Pflanzenwurzel als Funktion der Tiefe und der Zeit. Mitt. Dtsch. Bodenkundl. Ges. 1982, 23, 77–88. (In German) [Google Scholar]
- Wessolek, G. Bodenwasserhaushalt. In Hydrologie; Fohrer, N., Bormann, H., Miegel, K., Casper, M., Eds.; Haupt Verlag: Stuttgart, Germany, 2016; Volume 4513, pp. 69–90. ISBN 978-3-8252-4513-9. (In German) [Google Scholar]
- ATV-DVWK. Ermittlung der Verdunstung von Land- und Wasserflächen. In Merkblätter zur Wasserwirtschaft; Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.: Bonn, Germany, 1996; Volume 238, 135p, ISBN 3-89554-034-X-Heft238/1996. (In German) [Google Scholar]
- Senatsverwaltung für Stadtentwicklung und Wohnen. Umweltatlas Berlin. Available online: https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=zoomStart&mapId=k_wfs_baumbestand@senstadt (accessed on 4 March 2021).
- Gong, F.Y.; Zeng, Z.C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- Koelbing, M.; Schuetz, T.; Weiler, M. Downscaling potential evapotranspiration to the urban canyon. Hydrol. Earth Syst. Sci. Discuss. 2021. [Google Scholar] [CrossRef]
- Costello, L.R.; Matheny, N.P.; Clark, J.R. WUCOLS III: A Guide to Estimating Irrigation Waterneeds of Landscape Plantings in California: The Landscapecoefficient Method. San Mateo and San Francisco Counties: University of California Cooperative Extension, California Department of Water Resources. 2000. Available online: https://sanmarprop.com/assets/pdf/wucols00.pdf (accessed on 22 April 2021).
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Watson, I.D.; Johnson, G.T. Graphical estimation of sky view-factors in urban environments. J. Climatol. 1987, 7, 193–197. [Google Scholar] [CrossRef]
- Bohne, K. Monitoring zum Wasserhaushalt einer auf litoralem Versumpfungsmoor gewachsenen Regenmoorkalotte. In Aspekte der Geoökologie; Stüdemann, O., Ed.; Weißensee-Verlag: Berlin, Germany, 2008; pp. S313–S336. ISBN 978-3-89998-127-8. (In German) [Google Scholar]
- Schwärzel, K.; Bohl, H.P. An easily installable groundwater lysimeter to determine water balance components and hydraulic properties of peat soils. Hydrol. Earth Syst. Sci. 2003, 7, 23–32. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. 2021. QGIS Association. Available online: http://www.qgis.org (accessed on 22 January 2021).
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Zhang, Z. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation fluxes in simple and complex environments—Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessolek, G. Empfindlichkeitsanalyse eines Bodenwasser-Simulationsmodells. Mitt. Deutsch. Bodenkundl. Ges. 1983, 38, 165–171. (In German) [Google Scholar]
- Renger, M.; Bohne, K.; Facklam, M.; Harrach, T.; Riek, W.; Schäfer, W.; Wessolek, G.; Zacharias, S. Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis. In Bodenökologie und Bodengenese; Techn. Universität: Berlin, Germany, 2009; 80p, Available online: https://www.researchgate.net/publication/294427537_Bodenphysikalische_Kennwerte_und_Berechnungsverfahren_fur_die_Praxis/link/56c0c55c08ae2f498ef99662/download (accessed on 22 April 2021). (In German)
- Vereecken, H.; Feyen, J.; Maes, J.; Darius, P. Estimating the soil moisture retention characteristic from texture, bulk density and carbon content. Soil Sci. 1989, 148, 389–403. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Zacharias, S.; Wessolek, G. Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Sci. Soc. Am. J. 2007, 71, 43–50. [Google Scholar] [CrossRef]
- Breuste, J.; Keidel, T.; Meinel, G.; Münchow, B.; Netzband, M.; Schramm, M. On analyzing and predicting surface sealing. In UFZ-Leipzig Report of Ecological Studies; UFZ-Leipzig: Leipzig, Germany, 1996; Volume 7, 230p, ISSN 0948-9452. (In German) [Google Scholar]
- Boden, A.G. Ad-hoc-Arbeitsgruppe Boden der Geologischen Landesämter und der Bundesanstalt für Geowissenschaften und Rohstoffe der Bundesrepublik Deutschland. Aufl. Nachdr. 2005, 4, 392. (In German) [Google Scholar]
- Flöter, O. Wasserhaushalt Gepflasterter Strassen und Gehwege. Lysimeterversuche an Drei Aufbauten unter Praxisnahen Bedingungen unter Hamburger Klima. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany, 2006. (In German). [Google Scholar]
- Wessolek, G.; Facklam, M. Standorteigenschaften und Wasserhaushalt von versiegelten Flächen. J. Plant. Nutr. Soil Sci. 1997, 160, 41–46. [Google Scholar] [CrossRef]
- Nehls, T.; Jozefaciuk, G.; Sokolowska, Z.; Hajnos, M.; Wessolek, G. Pore-system characteristics of pavement seam materials of urban sites. J. Plant Nutri. Soil Sci. 2006, 169, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Gillner, S. Stadtbäume im Klimawandel-Dendrochronologische und Physiologische Untersuchungen zur Identifikation der Trockenstressempfindlichkeit Häufig Verwendeter Stadtbaumarten in Dresden. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2012. (In German). [Google Scholar]
- De Jaegere, T.; Hein, S.; Claessens, H. A review of the characteristics of small-leaved lime (Tilia cordata Mill.) and their implications for silviculture in a changing climate. Forests 2016, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Moser, A.; Anderson, M.; Zhang, C.; Rötzer, T.; Pauleit, S. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For. Urban Green. 2019, 38, 22–32. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef] [PubMed]
- DWD Climate-Data-Center. Historical Hourly Station Observations of 2m Air Temperature and Humidity for Germany, version 006; DWD Climate Data Center: Offenbach am Main, Germany, 2018. [Google Scholar]
- SenStadtWohn—Senatsverwaltung für Stadtentwicklung und Wohnen Berlin. Umweltatlas Berlin. Ausgabe. 2020. Available online: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ (accessed on 1 February 2021).
- Steppe, K.; De Pauw, D.J.W.; Doody, T.M.; Teskey, R.O. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010, 150, 1046–1056. [Google Scholar] [CrossRef]
- Fuchs, S.; Leuschner, C.; Link, R.; Coners, H.; Schuldt, B. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sapflow probes for diffuse-porous trees. Agric. For. Meteorol. 2017, 244–245, 151–161. [Google Scholar] [CrossRef]
Tree Species | Tr (-) | Classification |
---|---|---|
Platanaceae | 1.2 | high |
Tiliaceae | 1.2 | high |
Fagaceae | 1.1 | medium |
Ostrya | 1.1 | medium |
Robinia | 0.9 | low |
Quercus | 0.9 | low |
Castanea | 0.8 | very low |
Betula | 0.8 | very low |
Site Information | Usage for | Sources |
---|---|---|
Climate | ||
Annual precipitation (mm) | Water balance | Regional or national climate observation stations and services |
Summer precipitation (mm) from April 1 to September 30 | Water supply (Sw) Actual evapotranspiration (ETIa) Runoff (Ro) | |
Annual potential evapotranspiration (ET0) according to FAO | Water demand of the atmosphere | |
Street Tree | ||
Tree species | Water demand | Mapping or digital information of environmental agencies |
Radius of the canopy | Catchment area (CA) Water supply (Sw) Actual evapotranspiration (ETIa) | |
Effective rooting depth | Water in the rooted zone Water supply (Sw) Actual evapotranspiration | Young trees: 0.6 m Medium old trees: 1.0 m Old trees: 1.2 m |
Site Characteristics | ET0u, A, and SVF coefficients | Mapping sky view factors |
Soil, surface, and groundwater depth | ||
Soil texture | Soil available water in the root zone (Wa) | Mapping or information of the national soil survey |
Groundwater depth | Capillary rise (Qa) | Soil survey or environmental agency data |
Tree pit conditions | Runoff (Ro), ß coefficients ETIa of grass or sealing beneath the crone | Mapping or information of the local environmental agencies |
Urban Location | Space, Street Width (m) | Height of Buildings (m) | Degree of Shading ** | SVF * (-) | Advection A *** (-) |
---|---|---|---|---|---|
Street type I | 8–15 | >15 | High | 0.4-0.5 | - |
Street type II | 15–20 | 8–10 | Medium | 0.7 | - |
Street type III | 20–25 | 6–8 | Low | 0.8-1.0 | - |
Inner-city parks | >25 | - | - | 1.0 | 1.2–1.4 |
Inner-city places with single trees | >25 | Additional energy by advection and wind | 1.0 | 1.4–1.6 |
Tree Age Soil Conditions | Young Trees (<15 Years) | Middle Aged Trees (15–30 Years) | Old Trees (>30 Years) |
---|---|---|---|
Urban soils without severe compaction allowing deep rooting | 0.3–1.0 | 1.0–2.0 | 2.0–2.5 |
Compacted soils or stony soils allowing shallow rooting only | 0.3–0.7 * | 0.7–1.2 * | >1.2 * |
Soil Criteria | Bulk Density (Bd) ** | |||||||
---|---|---|---|---|---|---|---|---|
Bd ** (g/cm3) | 1.3–1.5 | >1.5 (g/cm3) | ||||||
Texture class | Soil available water * (Saw) (vol.%) | Effective root depth, We (m) | 0.8 | 1.0 | 1.2 | 0.8 | 1.0 | 1.2 |
Range | Tree age (years) | <15 | 15–30 | >30 | <15 | 15–30 | >30 | |
Medium sandy soil | 8–12 | Soil available water in the effective root zone (Wa) (mm) | 80 | 100 | 120 | 75 | 95 | 115 |
Fine sandy soil | 12–15 | 120 | 150 | 180 | 110 | 140 | 170 | |
Loamy sand | 12–16 | 128 | 160 | 192 | 112 | 140 | 168 | |
Sandy loam | 13–17 | 136 | 170 | 204 | 116 | 150 | 174 | |
Silty soil | 20–24 | 176 | 220 | 244 | 160 | 200 | 240 | |
Clayey soil | 7–12 | 96 | 120 | 144 | 56 | 70 | 84 |
Degree of Surface Sealing | βs | ßw | Pavement Type |
---|---|---|---|
Class I (low: <10%) | 0.90 | 0.95 | unsealed soil, concrete stones with grass |
Class II (med.: 10–50%) | 0.80 | 0.85 | small cobblestones |
Class III (high: 90–50%) | 0.55 | 0.60 | concrete pavement |
Class IV (severe: >90%) | 0.20 | 0.25 | asphalt |
Class I | Class II | Class III | Class IV |
Years of Investigation City Site No. | 2019 to 2020 Berlin I | 2019 to 2020 Berlin II | 2017 Munich III | ||
---|---|---|---|---|---|
Tree species, age | Tilia cordata, young tree, about 10a | Tilia cordata, middle aged tree, 30–40a | Tilia cordata, middle aged tree, 35a | ||
Measurements | Sap flow | Sap flow | Sap flow Rahman et al. [57] | ||
Site, i.e., street condition | Experimental area: single tree oasis effect | Park similar site | Street width: 25m; building height: 7m | ||
Tree pit condition | Bare soil | Grass | Lawn | ||
Year | 2019 | 2020 | 2019 | 2020 | 2017 |
Coefficients (A, SVF) for ET0 | 1.6 | 1.6 | 1.4 | 1.4 | 0.75 |
Summer rainfall, Ps (mm) | 104 | 205 | 104 | 205 | 612 |
Irrigation (mm) | 702 | 720 | - | - | - |
Soil available water root zone, Wa (mm) *** | 120 | 120 | 120 | 120 | 100 |
Rooting depth (dm) | 10 | 11 | 10 | 10 | 10 |
Relative tree water demand (-) | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Water supply, Sw (mm) | 886 | 1025 | 102 | 398 | 712 |
ET0 (mm/a) | 774 | 812 | 774 | 812 | 504 |
ET0u (mm/a) | 1238 | 1299 | 1084 | 1137 | 378 |
ET0u,s (April–September) (mm) | 1014 | 983 | 828 | 866 | 320 |
ETIa predicted (April–September) (mm) | 899 | 960 | 319 | 331 | 421 |
Ta measured by sap flow (mm) * | 780 | 942 | 256 | 251 | 265 |
Interception and evaporation of the street pit ** (mm) | 50 | 60 | 64 | 62 | 66 |
Sum of Ta measured + ETIa of street pit (mm) | 830 | 1022 | 320 | 314 | 331 |
Δ ETIa = ETIa predicted − ETIa measured (mm) | 69 | -62 | -1 | 18 | 90 |
Deviation (%) | 7.6 | -6.4 | <1 | 5.4 | 21.4 |
Street-Tree No. Age | 11 Young | 2 Middle | 6 and 12 Middle-Old |
---|---|---|---|
Mean water supply, Sw (mm) of the catchment | 430 | 320 | 310 |
Catchment area (m2) | 4.9 | 45.4 | 153.9 |
Cwa of the total catchment to 1m depth (L) | 2400 | 14,500 | 43,100 |
Mean annual ET0u (mm/a) for A = 1.0 | 625 | 625 | 625 |
Mean ET0u (mm/a) during the vegetation period | 498 | 498 | 498 |
Mean annual ETIa (mm/a) | 480 | 380 | 285 |
Mean ETIa (mm/a) during the vegetation period | 394 | 322 | 253 |
Mean ETIa per day (mm/d) during the vegetation period | 2.2 | 1.8 | 1.4 |
Water deficiency stress: ETIa/ET0u (-) | 0.8 | 0.6 | 0.5 |
Drought rating | ‘low’ | ‘medium’ | ‘high’ |
Mean daily water uptake of the catchment (L) (Apr.–Sept.) | 11 | 82 | 215 |
Additional runoff into the tree catchment (L) | 0 | 2752 | 761 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wessolek, G.; Kluge, B. Predicting Water Supply and Evapotranspiration of Street Trees Using Hydro-Pedo-Transfer Functions (HPTFs). Forests 2021, 12, 1010. https://doi.org/10.3390/f12081010
Wessolek G, Kluge B. Predicting Water Supply and Evapotranspiration of Street Trees Using Hydro-Pedo-Transfer Functions (HPTFs). Forests. 2021; 12(8):1010. https://doi.org/10.3390/f12081010
Chicago/Turabian StyleWessolek, Gerd, and Björn Kluge. 2021. "Predicting Water Supply and Evapotranspiration of Street Trees Using Hydro-Pedo-Transfer Functions (HPTFs)" Forests 12, no. 8: 1010. https://doi.org/10.3390/f12081010
APA StyleWessolek, G., & Kluge, B. (2021). Predicting Water Supply and Evapotranspiration of Street Trees Using Hydro-Pedo-Transfer Functions (HPTFs). Forests, 12(8), 1010. https://doi.org/10.3390/f12081010