Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Organic Mulching Technique
2.3. Soil Sampling and Sample Assay
2.4. Incubation Experiment and Measurement of Soil Nitrogen Mineralization
2.5. Soil Organic Nitrogen Fractionation
2.6. Models of Nitrogen Mineralization Kinetics
2.7. Data Analysis
3. Results
3.1. Basic Soil Properties of Bamboo Plantations
3.2. Soil Organic Nitrogen Fractions
3.3. Soil Nitrogen Mineralization
3.4. Model Fitting of N Mineralization Kinetics
3.5. Relationship between N Mineralization Kinetics Parameters with Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Zhou, X.; Zhang, Q.; Cheng, X. Consequences of afforestation for soil nitrogen dynamics in central China. Agric. Ecosyst. Environ. 2014, 183, 40–46. [Google Scholar] [CrossRef]
- Shan, Z.; Yin, Z.; Yang, H.; Zuo, C.; Zhu, T. Long-Term cultivation of fruit plantations decreases mineralization and nitrification rates in calcareous soil in the Karst Region in Southwestern China. Forests 2020, 11, 1282. [Google Scholar] [CrossRef]
- Schulten, H.R.; Schnitzer, M. The chemistry of soil organic nitrogen: A review. Biol. Fertil. Soils 1997, 26, 1–15. [Google Scholar] [CrossRef]
- Bremner, J.M. Inorganic forms of nitrogen. In Methods of Soil Analysis; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1179–1237. [Google Scholar]
- Stevenson, F.J. Organic Forms of Soil Nitrogen; Nitrogen in Agricultural Soils: Madison, WI, USA, 1982. [Google Scholar]
- Burdige, D.J.; Martens, C.S. Biogeochemical cycling in an organic-rich coastal marine basin: 10. The role of amino acids in sedimentary carbon and nitrogen cycling. Geochim. Cosmochim. Acta 1988, 52, 1571–1584. [Google Scholar] [CrossRef]
- Jones, D.L.; Kielland, K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol. Biochem. 2002, 34, 209–219. [Google Scholar] [CrossRef]
- Xu, Y.C.; Shen, Q.R.; Ran, W. Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization. Chemosphere 2003, 50, 739–745. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S.; Zhu, Z. Soil organic nitrogen composition and mineralization of paddy soils in a cultivation chronosequence in china. J. Soil Sediment. 2017, 17, 1588–1598. [Google Scholar] [CrossRef]
- Zhou, R.; El-Naggar, A.; Li, Y.; Cai, Y.; Chang, S.X. Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions. Environ. Sci. Pollut. Res. 2021, 28, 28777–28788. [Google Scholar] [CrossRef]
- Haghverdi, K.; Kooch, Y. Soil carbon and nitrogen fractions in response to land use/cover changes. Acta Oecol. 2020, 109, 103659. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Sen, R.; Mamolos, A.P.; Veresoglou, D.S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. J. Ecol. 2011, 99, 1339–1349. [Google Scholar] [CrossRef]
- Guntiñas, M.E.; Leirós, M.C.; Trasar-Cepeda, C.; Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 2012, 48, 73–80. [Google Scholar] [CrossRef]
- Fu, H.; Duan, Y.H.; Zhu, P.; Gao, H.J.; Xu, M.G.; Yang, X.M. Potential N mineralization and availability to maize in black soils in response to soil fertility improvement in Northeast China. J. Soil Sediment. 2021, 21, 905–913. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Curtin, D.; Campbell, C.A.; Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 1998, 30, 57–64. [Google Scholar] [CrossRef]
- Feyissa, A.; Yang, F.; Wu, J.; Chen, Q.; Zhang, D.; Cheng, X. Soil nitrogen dynamics at a regional scale along a precipitation gradient in secondary grassland of China. Sci. Total Environ. 2021, 781, 146736. [Google Scholar] [CrossRef] [PubMed]
- Zebarth, B.J.; Forge, T.A.; Goyer, C.; Brin, L.D. Effect of soil acidification on nitrification in soil. Can. J. Soil Sci. 2015, 95, 359363. [Google Scholar] [CrossRef]
- Cookson, W.R.; Abaye, D.A.; Marschner, P.; Murphy, D.V.; Stockdale, E.A.; Goulding, K.W.T. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol. Biochem. 2005, 37, 1726–1737. [Google Scholar] [CrossRef]
- Ros, G.H. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data. Soil Biol. Biochem. 2012, 45, 132–135. [Google Scholar] [CrossRef]
- Bechtold, J.S.; Naiman, R.J. Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biol. Biochem. 2006, 38, 1325–1333. [Google Scholar] [CrossRef]
- Ollivier, J.; Töwe, S.; Bannert, A.; Hai, B.; Kastl, E.M.; Meyer, A.; Su, M.X.; Kleineidam, K.; Schloter, M. Nitrogen turnover in soil and global change. FEMS Microbiol. Ecol. 2011, 78, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, Y.; Chang, S.X.; Jiang, P.; Zhou, G.; Zhang, J.; Liu, J. Responses of seasonal and diurnal soil CO2 effluxes to land-use change from paddy fields to Lei bamboo (Phyllostachys praecox) stands. Atmos. Environ. 2013, 77, 856–864. [Google Scholar] [CrossRef]
- Wu, J.S.; Jiang, P.K.; Chang, S.X.; Xu, Q.F.; Lin, Y. Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Can. J. Soil Sci. 2010, 90, 27–36. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, Z.; Zhuang, S. Effects of soil temperature, water content, species, and fertilization on soil respiration in bamboo forest in subtropical China. Forests 2019, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.Z.; Zhuang, S.Y.; Gui, R.Y.; Tang, L.Z. Effect of soil aeration treatment on the physiological and biochemical characteristics of Phyllostachys praecox under the organic material mulching. Plant Soil 2021, 459, 357–369. [Google Scholar] [CrossRef]
- Jiang, P.K.; Xu, Q.F.; Xu, Z.H.; Cao, Z.H. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecol. Manag. 2006, 236, 30–36. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, Z.; Xu, Q. Effect of mulching on soil chemical properties and enzyme activities in bamboo plantation of Phyllostachy praecox. Commun. Soil Sci. Plan Anal. 2002, 33, 3135–3145. [Google Scholar] [CrossRef]
- Gui, R.; Sun, X.; Zhuang, S. Soil acidification in Phyllostachys praecox f. preveynalis cultivation with intensive management. Commun. Soil Sci. Plan Anal. 2013, 44, 3235–3245. [Google Scholar] [CrossRef]
- Silgram, M.; Shepherd, M. The effects of cultivation on soil nitrogen mineralization. Adv. Agron. 1999, 65, 267–311. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, X.; Wang, Z.; Xu, Z.; He, C.; Sheng, L.; Liu, H.Y.; Wang, Z. Shift in nitrogen transformation in peatland soil by nitrogen inputs. Sci. Total Environ. 2020, 764, 142924. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods for Soil and Agro-Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Stanford, G.; Smith, S.L. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 1972, 36, 465–470. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Chang, S.X.; Xu, Q.; Li, Y.; Ma, Z.; Qin, H.; Cai, Y. Linking enhanced soil nitrogen mineralization to increased fungal decomposition capacity with Moso bamboo invasion of broadleaf forests. Sci. Total Environ. 2021, 771, 144779. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, F.J. Nitrogen-organic forms. In Methods of Soil Analysis, Part 3 Chemical Methods; Bigham, J.M., Ed.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 1185–1200. [Google Scholar]
- Wang, S.; Jiao, L.; Jin, X.; Niu, D. Characteristics of organic nitrogen fractions in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River area in China. Water Environ. J. 2012, 26, 473–481. [Google Scholar] [CrossRef]
- Li, H.; Han, Y.; Cai, Z. Nitrogen mineralization in paddy soils of the Taihu Region of China under anaerobic conditions: Dynamics and model fitting. Geoderma 2003, 115, 161–175. [Google Scholar] [CrossRef]
- Zhu, Z.L. Nitrogen mineralization and prediction of nitrogen availability of Taihu region. Acta Pedol. Sin. 1982, 21, 29–36. (In Chinese) [Google Scholar]
- Richter, J.; Nuske, A.; Boehmer, U.; Wehrmann, J. Simulation of nitrogen mineralization and transport in Loess-Parabrownearthes: Plot experiments. Plant Soil 1980, 54, 329–337. [Google Scholar] [CrossRef]
- Lindemann, W.C.; Connell, G.; Urquart, N.S. Previous sludge addition effect on nitrogen mineralization in freshly amends soil. Soil Sci. Soc. Am. J. 1988, 52, 109–112. [Google Scholar] [CrossRef]
- Song, Y.; Yao, Y.F.; Qin, X.; Wei, X.R.; Jia, X.X.; Shao, M.G. Response of carbon and nitrogen to afforestation from 0 to 5 m depth on two semiarid cropland soils with contrasting inorganic carbon concentrations. Geoderma 2020, 357, 113940. [Google Scholar] [CrossRef]
- Holubík, O.; Podrázský, V.; Vopravil, J.; Khel, T.; Remeš, J. Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil Water Res. 2014, 9, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, P.; Li, Y.; Wu, J.; Xu, K.; Hill, S.; Wang, H. Chemistry of decomposing mulching materials and the effect on soil carbon dynamics under a Phyllostachys praecox bamboo stand. J. Soil Sediment. 2013, 13, 24–33. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, P.; Chang, S.X.; Wu, J.; Lin, L. Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China. J. Soil Sediment. 2010, 10, 739–747. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Chang, S.X.; Jiang, P.; Zhou, G.; Liu, J.; Lin, L. Converting paddy fields to Lei bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions. Plant Soil 2013, 367, 249–261. [Google Scholar] [CrossRef]
- Pan, G.; Li, L.; Wu, L.; Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 2003, 10, 79–92. [Google Scholar] [CrossRef]
- Li, S.; Ai, S.; He, H. Soil’s nitrogen mineralization processes under continuously waterlogged incubation conditions. Acta Univ. Agric. Boreali-Occident. 1999, 27, 1–5. (In Chinese) [Google Scholar]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Boil. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Liu, Q.; Qi, L.; Hu, X.; Zhang, Y. Effects of nitrogen fertilization on nitrification and denitrification in Phyllostachys edulis forests. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2017, 41, 82–88. (In Chinese) [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Wang, G.H.; Xie, W.X. Soil organic N forms and N supply as affected by fertilization under intensive rice cropping system. Pedosphere 2006, 16, 345–353. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 2002, 107, 109–141. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Geisseler, D.; Horwath, W.R.; Joergensen, R.G.; Ludwig, B. Pathways of nitrogen utilization by soil microorganisms—A review. Soil Biol. Biochem. 2010, 42, 2058–2067. [Google Scholar] [CrossRef]
- Farzadfar, S.; Knight, J.D.; Congreves, K.A. Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition. Plant Soil 2021, 462, 7–23. [Google Scholar] [CrossRef]
- Mulvaney, R.; Khan, S.; Hoeft, R.; Brown, H. A soil organic nitrogen fraction that reduces the need for nitrogen fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1164–1172. [Google Scholar] [CrossRef]
- Li, L.; Li, S. Nitrogen mineralization from animal manures and its relation to organic N fractions. J. Integr. Agric. 2014, 13, 2040–2048. [Google Scholar] [CrossRef]
- Wu, S.; Suo, Y.; Liang, G.; Zheng, Z.; Xu, Z.; Lu, S. Soil acidification and buffering capacity of bamboo plantation soils under intensive cultivation management. Chin. J. Soil Sci. 2012, 43, 1120–1125. (In Chinese) [Google Scholar]
- Yan, E.R.; Wang, X.H.; Huang, J.J.; Li, G.Y.; Zhou, W. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to plantations in the subtropical area of Eastern China. Biogeochemistry 2008, 89, 239–251. [Google Scholar] [CrossRef]
- Miller, A.J.; Cramer, M.D. Root nitrogen acquisition and assimilation. Plant Soil 2005, 274, 1–36. [Google Scholar] [CrossRef]
- Jämtgård, S.; Näsholm, T.; Huss-Danell, K. Characteristics of amino acid uptake in barley. Plant Soil 2008, 302, 221–231. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Doran, J.W.; Walters, D.T.; Mosier, A.R.; Francis, D.D. Crop residue type and placement effects on denitrification and mineralization. Soil Sci. Soc. Am. J. 1991, 55, 1020–1025. [Google Scholar] [CrossRef] [Green Version]
- Baggs, E.M.; Rees, R.M.; Smith, K.A.; Vinten, A.J.A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag. 2000, 16, 82–87. [Google Scholar] [CrossRef]
- Aciego Pietri, J.C.; Brookes, P.C. Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biol. Biochem. 2008, 40, 797–802. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, Q.; Li, S.; Ge, J.; Liang, C.; Qin, H.; Xu, Q.; Fuhrmann, J.J. Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest. Geoderma 2019, 354, 113894. [Google Scholar] [CrossRef]
- Rasouli-Sadaghiani, M.H.; Moradi, N. Effect of poultry, cattle, sheep manures and sewage sludge on N mineralisation. Chem. Ecol. 2014, 30, 666–675. [Google Scholar] [CrossRef]
- Li, H.; Han, Y.; Roelcke, M.; Cai, Z. Net nitrogen mineralization in typical paddy soils of the Taihu Region of China under aerobic conditions: Dynamics and model fitting. Can. J. Soil Sci. 2008, 88, 719731. [Google Scholar] [CrossRef]
- Serna, M.D.; Pomares, F. Nitrogen mineralization of sludge-amended soil. Bioresour. Technol. 1992, 39, 285–290. [Google Scholar] [CrossRef]
- Nendel, C.; Reuter, S. Kinetics of net nitrogen mineralisation from soil-applied grape residues. Nutr. Cycl. Agroecosyst. 2007, 79, 233–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W.; Duan, P.; Cong, Y.; An, T.; Yu, N.; Zou, H.; Dang, X.; An, J.; Fan, Q.; et al. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation. PLoS ONE 2017, 12, e0171022. [Google Scholar] [CrossRef]
Site Treatment | pH | SOM g kg−1 | TN g kg−1 | NO3−-N mg kg−1 | NH4+-N mg kg−1 | C/N Ratio |
---|---|---|---|---|---|---|
PS | 6.54 ± 0.18 a | 43.26 ± 3.47 a | 2.59 ± 0.11 a | 6.18 ± 1.78 c | 8.67 ± 0.51 c | 9.69 ± 0.78 ab |
PNM | 4.75 ± 0.11 b | 34.16 ± 0.54 c | 2.08 ± 0.04 b | 23.85 ± 1.56 b | 12.72 ± 1.26 b | 9.53 ± 0.15 b |
PM | 4.00 ± 0.04 c | 36.58 ± 0.52 b | 2.08 ± 0.12 b | 43.32 ± 3.37 a | 20.22 ± 1.11 a | 10.20 ± 0.15 a |
Treatment | 14 Days | 56 Days | N14 Nt−1 | N14 TN−1 | Nt TN−1 | ||||
---|---|---|---|---|---|---|---|---|---|
NH4+-N | NO3−-N | N14 | NH4+-N | NO3−-N | Nt | ||||
mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | % | % | % | |
PS | 117.03 ± 3.20 a | 21.00 ± 2.18 a | 138.04 ± 3.51 a | 163.30 ± 7.09 a | 27.76 ± 2.24 ab | 191.06 ± 9.10 a | 72.25 | 5.33 | 7.38 |
PNM | 43.79 ± 0.84 b | 20.30 ± 5.04 a | 64.09 ± 4.65 b | 93.73 ± 1.97 b | 35.06 ± 8.19 a | 128.79 ± 7.89 b | 49.76 | 3.08 | 6.19 |
PM | 38.90 ± 0.97 b | 13.61 ± 1.64 b | 52.51 ± 1.48 b | 72.44 ± 1.97 c | 23.04 ± 2.61 b | 95.48 ± 4.10 c | 55.00 | 2.52 | 4.59 |
Model Name | Parameter | Unit | PS | PNM | PM |
---|---|---|---|---|---|
Effective cumulated temperature model | R2 | 0.991 | 0.996 | 0.998 | |
k | 28.01 | 3.468 | 4.421 | ||
n | 0.278 | 0.517 | 0.439 | ||
One-pool model | R2 | 0.991 | 0.996 | 0.989 | |
N0 | mg kg−1 | 184.4 | 137.5 | 95.76 | |
k0 | d−1 | 0.100 | 0.044 | 0.056 | |
Two-pool model | R2 | 0.999 | 1.000 | 0.999 | |
Na + Nr | mg kg−1 | 197.7 | 255.3 | 124.3 | |
Na | mg kg−1 | 79.97 | 61.01 | 31.05 | |
ka | d−1 | 0.265 | 0.095 | 0.213 | |
Nr | mg kg−1 | 117.7 | 194.2 | 93.22 | |
kr | d−1 | 0.049 | 0.008 | 0.021 | |
Special model | R2 | 0.998 | 1.000 | 0.999 | |
Na0 | mg kg−1 | 146.1 | 72.94 | 50.44 | |
ka0 | d−1 | 0.148 | 0.085 | 0.131 | |
Cr | mg kg−1 d−1 | 0.821 | 1.006 | 0.808 |
Soil Properties | Nt | k | n | N0 | k0 | Na | ka | Nr | kr | Na0 | ka0 | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOM | 0.713 ** | 0.757 ** | −0.764 ** | 0.603 ** | 0.765 ** | 0.485 * | 0.658 ** | 0.770 ** | 0.685 ** | 0.639 ** | ||
TN | 0.798 ** | 0.863 ** | −0.843 ** | 0.729 ** | 0.858 ** | 0.625 ** | 0.658 ** | 0.847 ** | 0.810 ** | 0.629 ** | −0.409 * | |
NH4+-N | −0.722 ** | 0.637 ** | 0.463 * | −0.798 ** | −0.539 ** | −0.753 ** | −0.144 | −0.475 * | −0.725 ** | |||
NO3−-N | −0.677 ** | −0.671 ** | 0.541 ** | −0.755 ** | −0.597 ** | −0.680 ** | −0.288 | −0.553 ** | −0.716 ** | |||
pH | 0.906 ** | 0.946 ** | −0.819 ** | 0.968 ** | 0.884 ** | 0.912 ** | 0.446 * | 0.823 ** | 0.984 ** | |||
AAN | 0.744 ** | 0.832 ** | −0.806 ** | 0.714 ** | 0.825 ** | 0.624 ** | 0.609 ** | 0.810 ** | 0.789 ** | 0.578 ** | −0.407 * | |
ASN | −0.467 * | −0.436 * | ||||||||||
AN | 0.458 * | 0.568 ** | 0.477 * | −0.413 * | ||||||||
UHN | 0.440 * | 0.475 * | 0.609 ** | 0.617 ** | 0.561 ** | |||||||
NHN | 0.449 * | |||||||||||
THN | 0.718 ** | 0.860 ** | −0.827 ** | 0.747 ** | 0.849 ** | 0.653 ** | 0.619 ** | 0.831 ** | 0.819 ** | 0.587 ** | 0.393 |
r | p | |
---|---|---|
SOM | 0.5219 | 0.011 |
TN | 0.9839 | 0.001 |
NH4+-N | 0.9720 | 0.001 |
NO3−-N | 0.8338 | 0.002 |
pH | 0.9549 | 0.001 |
AN | −0.1961 | 0.889 |
AAN | 0.6123 | 0.004 |
ASN | 0.0055 | 0.392 |
UHN | 0.1737 | 0.140 |
NHN | 0.2506 | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Z.; Sun, X.; Gao, J.; Zhuang, S. Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization. Forests 2021, 12, 1109. https://doi.org/10.3390/f12081109
Qian Z, Sun X, Gao J, Zhuang S. Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization. Forests. 2021; 12(8):1109. https://doi.org/10.3390/f12081109
Chicago/Turabian StyleQian, Zhuangzhuang, Xiao Sun, Jianshuang Gao, and Shunyao Zhuang. 2021. "Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization" Forests 12, no. 8: 1109. https://doi.org/10.3390/f12081109
APA StyleQian, Z., Sun, X., Gao, J., & Zhuang, S. (2021). Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization. Forests, 12(8), 1109. https://doi.org/10.3390/f12081109