Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement
Abstract
:1. Introduction
2. Material and Methods
2.1. Test Trees
2.2. 3D Laser Scanner Measurement
2.3. Manual Measurement
2.4. Reconstruction of RSA from Root Point Data
2.5. Calibration of RSA Data
2.6. Comparison of RSA Data Obtained by Different Methods
2.7. Statistical Analysis
3. Results
3.1. Reconstruction of RSA in Manual and 3D Laser Scanner Measurements
3.2. Comparison of Root Point Data between Manual and 3D Laser Scanner Measurements
3.3. Differences in Taper and CSA of Roots between Manual and 3D Laser Scanner Measurements
4. Discussion
4.1. Significant Steps in Reconstructing RSA from Point Cloud Data
4.2. Other Issues to Consider in the Use of 3D Laser Scanning
4.3. Future Aspects for RSA Measurement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, R.B.; Pockman, W.T.; Hoffmann, W.A. The Structure and Function of Root Systems. In Handbook of Functional Plant Ecology; Pugnaire, F.I., Valladares, F., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1999; pp. 196–220. [Google Scholar]
- Schwarz, M.; Lehmann, P.; Or, D. Quantifying Lateral Root Reinforcement in Steep Slopes—From a Bundle of Roots to Tree Stands. Earth Surf. Process Landf. 2010, 35, 354–367. [Google Scholar] [CrossRef]
- Yamase, K.; Todo, C.; Torii, N.; Tanikawa, T.; Yamamoto, T.; Ikeno, H.; Ohashi, M.; Dannoura, M.; Hirano, Y. Dynamics of Soil Reinforcement by Roots in a Regenerating Coppice Stand of Quercus serrata and Effects on Slope Stability. Ecol. Eng. 2021, 162, 106169. [Google Scholar] [CrossRef]
- Ennos, A.R. The Mechanics of Root Anchorage. Adv. Bot. Res. 2000, 33, 133–157. [Google Scholar]
- Ghestem, M.; Veylon, G.; Bernard, A.; Vanel, Q.; Stokes, A. Influence of Plant Root System Morphology and Architectural Traits on Soil Shear Resistance. Plant Soil 2014, 377, 43–61. [Google Scholar] [CrossRef]
- Dorval, A.D.; Meredieu, C.; Danjon, F. Anchorage Failure of Young Trees in Sandy Soils Is Prevented by a Rigid Central Part of the Root System with Various Designs. Ann. Bot. 2016, 18, 747–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danjon, F.; Stokes, A.; Bakker, M.R. Root Systems of Woody Plants. In Plant Roots; The Hidden Half; CRC Press: Boca Raton, FL, USA, 2013; p. 848. [Google Scholar]
- Yang, M.; Défossez, P.; Danjon, F.; Fourcaud, T. Analyzing Key Factors of Roots and Soil Contributing to Tree Anchorage of Pinus species. Trees 2018, 32, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Knappett, J.A.; Bengough, A.G.; Ke, Y.X. Small-Scale Modelling of Plant Root Systems Using 3D Printing, with Applications to Investigate the Role of Vegetation on Earthquake-Induced Landslides. Landslides 2017, 14, 1747–1765. [Google Scholar] [CrossRef] [Green Version]
- Yamase, K.; Tanikawa, T.; Dannoura, M.; Todo, C.; Yamamoto, T.; Ikeno, H.; Ohashi, M.; Aono, K.; Doi, R.; Hirano, Y. Estimating Slope Stability by Lateral Root Reinforcement in Thinned and Unthinned Stands of Cryptomeria japonica Using Ground-Penetrating Radar. Catena 2019, 183, 104227. [Google Scholar] [CrossRef]
- Danjon, F.; Fourcaud, T.; Bert, D. Root Architecture and Wind-Firmness of Mature Pinus pinaster. New Phytol. 2005, 168, 387–400. [Google Scholar] [CrossRef]
- Danjon, F.; Reubens, B. Assessing and Analyzing 3D Architecture of Woody Root Systems, a Review of Methods and Applications in Tree and Soil Stability, Resource Acquisition and Allocation. Plant Soil 2008, 303. [Google Scholar] [CrossRef]
- Ohashi, M.; Ikeno, H.; Sekihara, K.; Tanikawa, T.; Dannoura, M.; Yamase, K.; Todo, C.; Tomita, T.; Hirano, Y. Reconstruction of Root Systems in Cryptomeria japonica Using Root Point Coordinates and Diameters. Planta 2019, 249, 445–455. [Google Scholar] [CrossRef]
- Henderson, R.; Ford, E.D.; Renshaw, E.; Deans, J.D. Morphology of the Structural Root System of Sitka spruce 1. Analysis and Quantitative Description. Forestry 1983, 56, 121–135. [Google Scholar]
- Mulatya, J.M.; Wilson, J.; Ong, C.K.; Deans, J.D.; Sprent, J.I. Sprent. Agrofor. Syst. 2002, 56, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Oppelt, A.L.; Kurth, W.; Dzierzon, H.; Jentschke, G.; Godbold, D.L. Structure and Fractal Dimensions of Root Systems of Four Co-Occurring Fruit Tree Species from Botswana. Ann. For. Sci. 2000, 57, 463–475. [Google Scholar] [CrossRef]
- Godin, C.; Caraglio, Y.; Costes, E. Exploring Plant Topological Structure with the AMAPmod Software: An Outline. Silva Fenn. 1997, 31, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Danjon, F.; Sinoquet, H.; Godin, C.; Colin, F.; Drexhage, M. Characterisation of Structural Tree Root Architecture Using 3D Digitising and AMAPmod Software. Plant Soil 1999, 211, 241–258. [Google Scholar] [CrossRef]
- Sorgonà, A.; Proto, A.R.; Abenavoli, L.M.; Di Iorio, A. Spatial Distribution of Coarse Root Biomass and Carbon in a High-Density Olive Orchard: Effects of Mechanical Harvesting Methods. Trees 2018, 32, 919–931. [Google Scholar] [CrossRef]
- Cast, C.S.; Meredieu, C.; Défossez, P.; Pagès, L.; Danjon, F. Modelling Root System Development for Anchorage of Forest Trees up to the Mature Stage, Including Acclimation to Soil Constraints: The Case of Pinus pinaster. Plant Soil 2019, 439, 405–430. [Google Scholar] [CrossRef]
- Lontoc-Roy, M.; Dutilleul, P.; Prasher, S.O.; Han, L.; Smith, D.L. Computed Tomography Scanning for Three-Dimensional Imaging and Complexity Analysis of Developing Root Systems. Can. J. Bot. 2005, 83, 1434–1442. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive Estimates of Above-Ground Biomass Using Terrestrial Laser Scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Dassot, M.; Constant, T.; Fournier, M. The Use of Terrestrial LiDAR Technology in Forest Science: Application Fields, Benefits and Challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef] [Green Version]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D.; Fleck, S.; Leuschner, C.; Hammett, T. Review of Ground-based Methods to Measure the Distribution of Biomass in Forest Canopies. Ann. For. Sci. 2011, 68, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Popescu, S.; Eriksson, M.; Sheridan, R.; Ku, N. Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter. Remote Sens. 2015, 7, 1877–1896. [Google Scholar] [CrossRef] [Green Version]
- Lau, A.; Bentley, L.P.; Martius, C.; Shenkin, A.; Bartholomeus, H.; Raumonen, P.; Malhi, Y.; Jackson, T.; Herold, M. Quantifying Branch Architecture of Tropical Trees Using Terrestrial LiDAR and 3D Modelling. Trees 2018, 32, 1219–1231. [Google Scholar] [CrossRef] [Green Version]
- Gärtner, H.; Wagner, B.; Heinrich, I.; Denier, C. 3D-Laser Scanning: A New Method to Analyze Coarse Tree Root Systems. For. Snow Landsc. Res. 2009, 82, 95–106. [Google Scholar]
- Wagner, B.; Gärtner, H.; Ingensand, H.; Santini, S. Incorporating 2D tree-ring data in 3D laser scans of coarse-root systems. Plant Soil 2010, 334, 175–187. [Google Scholar] [CrossRef]
- Wagner, B.; Santini, S.; Ingensand, H.; Gärtner, H. A tool to model 3D coarse-root development with annual resolution. Plant Soil 2011, 346, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Astrup, R.; Raumonen, P.; Liski, J.; Krooks, A.; Kaasalainen, S.; Åkerblom, M.; Kaasalainen, M. Tree Root System Characterization and Volume Estimation by Terrestrial Laser Scanning and Quantitative Structure Modeling. Forests 2014, 5, 3274–3294. [Google Scholar] [CrossRef]
- Sakamoto, T.; Noguchi, H.; Gotoh, Y.; Suzuki, S.; Shimada, K. Management of Japanese Black Pine (Pinus thunbergii) Seedlings Caused by Natural Regeneration. J. Jpn. Soc. Coast. For. 2013, 12, 29–34, (In Japanese with English summary). [Google Scholar]
- Tanaka, J.; Nakazawa, H.; Satou, T. Case Study of Root Systems Growth of Pinus thunbergii Parlatore and Groundwater Level in the Nishinohama Coastal Forest, Tahara City, Aichi Prefecture. J. JSRT 2017, 43, 298–301. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Todo, C.; Yamase, K.; Tanikawa, T.; Dannoura, M.; Ohashi, M.; Doi, R.; Wada, R.; Ikeno, H. Quantification of the Contrasting Root Systems of Pinus thunbergii in Soils with Different Groundwater Levels in a Coastal Forest in Japan. Plant Soil 2018, 426, 327–337. [Google Scholar] [CrossRef]
- Todo, C.; Tokoro, C.; Yamase, K.; Tanikawa, T.; Ohashi, M.; Ikeno, H.; Dannoura, M.; Miyatani, K.; Doi, R.; Hirano, Y. Stability of Pinus thunbergii Between Two Contrasting Stands at Differing Distances from the Coastline. For. Ecol. Manag. 2019, 431, 44–53. [Google Scholar] [CrossRef]
- FAO-UNESCO. Soil Map of the World. Revised Legend. Reprinted with Corrections. In World Soil Resources Report 60; Food and Agriculture Organization: Rome, Italy, 1990; p. 119. [Google Scholar]
- Japan Meteorological Agency. Available online: http://www.data.jma.go.jp/obd/stats/etrn/ (accessed on 18 April 2021).
- FARO Technologies Inc. FARO Laser Scanner Focus. Available online: https://faro.app.box.com/s/kfpwjofogeegocr7mf2s866s2qalnaqw (accessed on 18 April 2021).
- Feng, L.; Zhao, T.; Kim, J. neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the Swc Format. eNeuro 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Defossez, P.; Dupont, S. A Root-to-Foliage Tree Dynamic Model for Gusty Winds During Wind Storm Conditions. Agric. Meteorol. 2020, 287, 107949. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 12 July 2020).
- Liski, J.; Kaasalainen, S.; Raumonen, P.; Akujärvi, A.; Krooks, A.; Repo, A.; Kaasalainen, M. Indirect Emissions of Forest Bioenergy: Detailed Modeling of Stump-Root Systems. GCB Bioenergy 2014, 6, 777–784. [Google Scholar] [CrossRef]
- Coutts, M.P. Components of Tree Stability in Sitka Spruce on Peaty Gley Soil. Forestry 1986, 59, 173–197. [Google Scholar] [CrossRef]
- Nicoll, B.C.; Ray, D. Adaptive Growth of Tree Root Systems in Response to Wind Action and Site Conditions. Tree Physiol. 1996, 16, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoll, B.C.; Easton, E.P.; Milner, A.D.; Walker, C.; Coutts, M.P. Wind Stability Factors in Tree Selection: Distribution of Biomass within Root Systems of Sitka Spruce Clones. In Wind and Trees; Coutts, M.P., Grace, J., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 276–292. [Google Scholar]
- Boudon, F.; Preuksakarn, C.; Ferraro, P.; Diener, J.; Nacry, P.; Nikinmaa, E.; Godin, C. Quantitative Assessment of Automatic Reconstructions of Branching Systems Obtained from Laser Scanning. Ann. Bot. 2014, 114, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Yamamoto, R.; Dannoura, M.; Aono, K.; Igarashi, T.; Ishii, M.; Yamase, K.; Makita, N.; Kanazawa, Y. Detection Frequency of Pinus thunbergii Roots by Ground-Penetrating Radar Is Related to Root Biomass. Plant Soil 2012, 360, 363–373. [Google Scholar] [CrossRef]
- Kaestner, A.; Schneebeli, M.; Graf, F. Visualizing Three-Dimensional Root Networks Using Computed Tomography. Geoderma 2006, 136, 459–469. [Google Scholar] [CrossRef]
Properties | Root System 1 | Root System 2 |
---|---|---|
Age (y) | 45 | 50 |
Height (m) | 10.8 | 11.4 |
Stem diameter at breast height (cm) | 19.5 | 18.5 |
Critical turning moment (kN·m) | 25.5 | 33.6 |
Maximum depth of root (cm) | 126 | 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todo, C.; Ikeno, H.; Yamase, K.; Tanikawa, T.; Ohashi, M.; Dannoura, M.; Kimura, T.; Hirano, Y. Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement. Forests 2021, 12, 1117. https://doi.org/10.3390/f12081117
Todo C, Ikeno H, Yamase K, Tanikawa T, Ohashi M, Dannoura M, Kimura T, Hirano Y. Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement. Forests. 2021; 12(8):1117. https://doi.org/10.3390/f12081117
Chicago/Turabian StyleTodo, Chikage, Hidetoshi Ikeno, Keitaro Yamase, Toko Tanikawa, Mizue Ohashi, Masako Dannoura, Toshifumi Kimura, and Yasuhiro Hirano. 2021. "Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement" Forests 12, no. 8: 1117. https://doi.org/10.3390/f12081117
APA StyleTodo, C., Ikeno, H., Yamase, K., Tanikawa, T., Ohashi, M., Dannoura, M., Kimura, T., & Hirano, Y. (2021). Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement. Forests, 12(8), 1117. https://doi.org/10.3390/f12081117