Experimental and Reliability-Based Investigation on Sheathing-to-Framing Joints under Monotonic and Cyclic Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Specifications and Specimen Design
2.2. Experimental Testing Procedure
2.3. Mechanical Performance Parameters
2.4. Design Methods for Joints
2.5. Reliability Analysis for Joints
3. Results
3.1. Failure Mode
3.2. Load–Displacement Relationships
3.3. Mechanical Performance
3.3.1. Ultimate Bearing Capacity
3.3.2. Envelope Curves and Strength Degradation
3.3.3. Initial Stiffness and Stiffness Degradation
3.3.4. Equivalent Viscous Damping
3.4. Compared with Design Codes
3.5. Reliability Results
4. Discussion
4.1. Application Suggestions
4.2. Design Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Izzi, M.; Polastri, A. Low cycle ductile performance of screws used in timber structures. Constr. Build. Mater. 2019, 217, 416–426. [Google Scholar] [CrossRef]
- Hu, W.; Chen, B. A Methodology for Optimizing Tenon Geometry Dimensions of Mortise-and-Tenon Joint Wood Products. Forests 2021, 12, 478. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Ma, Y.; Joshua, K.; Sepasgozar, S.M.; Yu, Y.; Li, J.; Sepasgozar, S.; Marroquin, F.A. Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design. Sustainability 2021, 13, 2598. [Google Scholar] [CrossRef]
- Jayamon, J.R.; Line, P.; Charney, F.A. State-of-the-Art Review on Damping in Wood-Frame Shear Wall Structures. J. Struct. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Guíñez, F.; Santa María, H.; Almazán, J.L. Monotonic and cyclic behaviour of wood frame shear walls for mid-height timber buildings. Eng. Struct. 2019, 189, 100–110. [Google Scholar] [CrossRef]
- Bagheri, M.M.; Doudak, G. Structural characteristics of light-frame wood shear walls with various construction detailing. Eng. Struct. 2020, 205. [Google Scholar] [CrossRef]
- Pang, W.; Hassanzadeh Shirazi, S.M. Corotational Model for Cyclic Analysis of Light-Frame Wood Shear Walls and Diaphragms. J. Struct. Eng. 2013, 139, 1303–1317. [Google Scholar] [CrossRef]
- Guo, S.; He, M.; Li, Z.; Liang, F.; Chen, F.; Sun, Y.; Briseghella, B.; He, G. Lateral performance of midply wood shear walls with anchor tie-down system: Experimental investigation and numerical simulation. Constr. Build. Mater. 2020, 235. [Google Scholar] [CrossRef]
- Di Gangi, G.; Demartino, C.; Quaranta, G.; Monti, G. Dissipation in sheathing-to-framing connections of light-frame timber shear walls under seismic loads. Eng. Struct. 2020, 208. [Google Scholar] [CrossRef]
- Sartori, T.; Tomasi, R. Experimental investigation on sheathing-to-framing connections in wood shear walls. Eng. Struct. 2013, 56, 2197–2205. [Google Scholar] [CrossRef]
- Sadeghi Marzaleh, A.; Steiger, R. Experimental investigation of OSB sheathed timber frame shear walls with strong anchorage subjected to cyclic lateral loading. Eng. Struct. 2021, 226. [Google Scholar] [CrossRef]
- Seim, W.; Kramar, M.; Pazlar, T.; Vogt, T. OSB and GFB as Sheathing Materials for Timber-Framed Shear Walls: Comparative Study of Seismic Resistance. J. Struct. Eng. 2016, 142. [Google Scholar] [CrossRef]
- Poletti, E.; Vasconcelos, G.; Branco, J.M.; Koukouviki, A.M. Performance evaluation of traditional timber joints under cyclic loading and their influence on the seismic response of timber frame structures. Constr. Build. Mater. 2016, 127, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Gu, J. Seismic Reliability Analysis of Wood Shear Walls Using Different Methods. J. Struct. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Premrov, M.; Dobrila, P. Numerical analysis of sheathing boards influence on racking resistance of timber-frame walls. Adv. Eng. Softw. 2012, 45, 21–27. [Google Scholar] [CrossRef]
- Judd, J.P.; Fonseca, F.S. Analytical Model for Sheathing-to-Framing Connections in Wood Shear Walls and Diaphragms. J. Struct. Eng. 2005, 131, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; El Damatty, A.A.; Musa, A.; Hamada, A. Simplified numerical approach for the lateral load analysis of light-frame wood shear wall structures. Eng. Struct. 2020, 219. [Google Scholar] [CrossRef]
- Lafontaine, A.; Chen, Z.; Doudak, G.; Chui, Y.H. Lateral Behavior of Light Wood-Frame Shear Walls with Gypsum Wall Board. J. Struct. Eng. 2017, 143, 04017069. [Google Scholar] [CrossRef]
- Mirra, M.; Ravenshorst, G.; de Vries, P.; van de Kuilen, J.-W. An analytical model describing the in-plane behaviour of timber diaphragms strengthened with plywood panels. Eng. Struct. 2021, 235, 112128. [Google Scholar] [CrossRef]
- Jockwer, R.; Fink, G.; Khler, J. Assessment of the failure behaviour and reliability of timber connections with multiple dowel-type fasteners. Eng. Struct. 2018, 172, 76–84. [Google Scholar] [CrossRef]
- Echeverry, J.S.; Correal, J.F. Cyclic behavior of Laminated Guadua Mat sheathing-to-framing connections. Constr. Build. Mater. 2015, 98, 69–79. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, Y.; Wang, R.; Monti, G. Studies of Nail Connectors Used in Wood Frame Shear Walls with Ply-Bamboo Sheathing Panels. J. Mater. Civ. Eng. 2015, 27. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, Y.; Li, Z. Lateral Loading Performance of Lightweight Glubam Shear Walls. J. Struct. Eng. 2017, 143. [Google Scholar] [CrossRef]
- Zheng, W.; Li, Y.; Zhou, Y.; Zhu, Y.; Lu, W.; Liu, W.; Wang, H. Experimental investigation on the behavior of plybamboo sheathing-to-framing screwed connections. Constr. Build. Mater. 2020, 262. [Google Scholar] [CrossRef]
- Rao, F.; Ji, Y.; Huang, Y.; Li, N.; Zhang, Y.; Chen, Y.; Yu, W. Influence of resin molecular weight on bonding interface, water resistance, and mechanical properties of bamboo scrimber composite. Constr. Build. Mater. 2021, 292, 123458. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Yu, Y.; Liu, Y.; Jiang, D. Loosening of Bolted Connections under Transverse Loading in Timber Structures. Forests 2020, 11, 816. [Google Scholar] [CrossRef]
- GB50005-2017. Code for Design of Timber Structures; Ministry of Construction of the People’s Republic of China: Beijing, China, 2017.
- EN 1995-1-1. Eurocode 5: Design of Timber Structures—Part 1-1: General-Common Rules and Rules for Buildings; European Committee for Standardization CEN: Bruxelles, Belgium, 2004. [Google Scholar]
- Wei, Y.; Tang, S.; Ji, X.; Zhao, K.; Li, G. Stress-strain behavior and model of bamboo scrimber under cyclic axial compression. Eng. Struct. 2020, 209, 110279. [Google Scholar] [CrossRef]
- ISO 10984. Timber Structures—Dowel-Type Fasteners—Part 2: Determination of Embedding Strength; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- ASTM F1575-03. Standard Test Method for Determining Bending Yield Moment of Nails; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM D1761. Standard Test Methods for Mechanical Fasteners in Wood; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ISO 16670. Timber Structures—Joints Made with Mechanical Fasteners—Quasi-Static Reversed-Cyclic Test Method; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Johnston, A.R.; Dean, P.K.; Shenton, H.W., III. Effects of Vertical Load and Hold-Down Anchors on the Cyclic Response of Wood Framed Shear Walls. J. Struct. Eng. 2006, 132, 1426–1434. [Google Scholar] [CrossRef]
- Nikolaidis, E.; Ghiocel, D.M.; Singhal, S. Engineering Design Reliability Handbook; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Zhang, X.; Shahnewaz, M.; Tannert, T. Seismic reliability analysis of a timber steel hybrid system. Eng. Struct. 2018, 167, 629–638. [Google Scholar] [CrossRef]
- Estrella, X.; Malek, S.; Almazán, J.L.; Guindos, P.; Santa María, H. Experimental Study of the Effects of Continuous Rod Hold-Down Anchorages on the Cyclic Response of Wood Frame Shear Walls. Eng. Struct. 2021, 230. [Google Scholar] [CrossRef]
- EN 12512:2001. Timber Structures—Test Methods-Cyclic Testing of Joints Made with Mechanical Fasteners; European Committee for Standardization CEN: Bruxelles, Belgium, 2001. [Google Scholar]
- Schick, M.; Seim, W. Overstrength values for light frame timber wall elements based on reliability methods. Eng. Struct. 2019, 185, 230–242. [Google Scholar] [CrossRef]
- Mehta, M.; Scarborough, W.; Armpriest, D. Building Construction: Principles, Materials, and Systems; Pearson: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
Grouping | Loading Direction | Sheathing Panel Type | Fastener Type | Number of Tests | |
---|---|---|---|---|---|
Monotonic | Cyclic | ||||
CSN | Perpendicular | SPF panel | Nail | 10 | 3 |
CSS | Screw | 10 | 3 | ||
CBN | BS panel | Nail | 10 | 3 | |
CBS | Screw | 10 | 3 | ||
PSN | Parallel | SPF panel | Nail | 10 | 3 |
PSS | Screw | 10 | 3 | ||
PBN | BS panel | Nail | 10 | 3 | |
PSS | Screw | 10 | 3 |
Type of Forces | Dead Load g | Floor Live Load of the Residence q | Load Duration Effect KQ3 | Geometrical Characteristic Uncertainty KA | Calculation Model Error KP |
---|---|---|---|---|---|
Mean value μ | 1.06 | 0.644 | 0.72 | 0.94 | 1 |
Coefficient of variation V | 0.07 | 0.233 | 0.12 | 0.08 | 0.05 |
Group | Ultimate Bearing Capacity (N) | |||||
---|---|---|---|---|---|---|
Monotonic Test | Cyclic Test | |||||
Pull | Push | |||||
μ | V | μ | V | μ | V | |
CSN | 738.90 | 0.19 | 531.77 | 0.17 | −132.44 | 0.15 |
CSS | 997.97 | 0.13 | 833.52 | 0.19 | −508.41 | 0.26 |
CBN | 1287.78 | 0.24 | 893.27 | 0.08 | −651.92 | 0.16 |
CBS | 2286.04 | 0.15 | 1768.98 | 0.11 | −1191.10 | 0.09 |
PSN | 641.48 | 0.20 | 563.70 | 0.26 | −450.47 | 0.27 |
PSS | 854.22 | 0.15 | 689.42 | 0.17 | −517.79 | 0.24 |
PBN | 1134.71 | 0.23 | 847.83 | 0.08 | −1439.66 | 0.29 |
PSS | 1802.22 | 0.19 | 1078.12 | 0.20 | −1435.34 | 0.14 |
Joint Type | Calculated Results | Tests Results | |||||
---|---|---|---|---|---|---|---|
Design Value (N) | Failure Mode | Ultimate Bearing Capacity | Failure Mode | ||||
GB50005 | Eurocode 5 | GB50005 | Eurocode 5 | Perpendicular Loading | Parallel Loading | ||
SPF-nail | 151.54 | 434.05 | E | F | 738.90 | 641.48 | E |
SPF-screw | 293.37 | 644.56 | E | E | 997.97 | 854.22 | E |
BS-nail | 289.82 | 496.16 | E | F | 1287.78 | 1134.71 | F |
BS-screw | 355.39 | 775.51 | C | F | 2286.04 | 1802.22 | F |
Under Monotonic Load | ||||||||
CSN | PSN | CSS | PSS | CBN | PBN | CBS | PSS | |
ρ = 0 | 3.91 | 3.23 | 4.51 | 3.19 | 3.17 | 2.94 | 6.79 | 4.50 |
ρ = 0.2 | 4.70 | 3.98 | 5.00 | 3.63 | 3.45 | 3.22 | 7.22 | 4.84 |
ρ = 0.3 | 4.84 | 4.11 | 5.20 | 3.80 | 3.55 | 3.33 | 7.39 | 4.98 |
ρ = 0.5 | 5.06 | 4.32 | 5.52 | 4.08 | 3.73 | 3.51 | 7.67 | 5.20 |
ρ = 1 | 5.43 | 4.68 | 6.07 | 4.55 | 4.03 | 3.83 | 8.14 | 5.57 |
ρ = 1.5 | 5.67 | 4.90 | 6.41 | 4.84 | 4.21 | 4.02 | 8.44 | 5.81 |
ρ = 2 | 5.83 | 5.05 | 6.64 | 5.05 | 4.34 | 4.15 | 8.64 | 5.97 |
Under Cyclic Loads | ||||||||
CSN | PSN | CSS | PSS | CBN | PBN | CBS | PSS | |
ρ = 0 | 0.03 | 0.97 | 0.86 | 0.97 | 1.88 | 1.80 | 2.65 | 1.52 |
ρ = 0.2 | 0.23 | 1.24 | 1.05 | 1.24 | 2.17 | 1.98 | 2.89 | 1.71 |
ρ = 0.3 | 0.27 | 1.35 | 1.13 | 1.35 | 2.29 | 2.05 | 2.99 | 1.78 |
ρ = 0.5 | 0.37 | 1.53 | 1.26 | 1.53 | 2.48 | 2.17 | 3.14 | 1.91 |
ρ = 1 | 0.42 | 1.83 | 1.47 | 1.83 | 2.81 | 2.37 | 3.41 | 2.11 |
ρ = 1.5 | 0.48 | 2.01 | 1.60 | 2.01 | 3.01 | 2.49 | 3.58 | 2.24 |
ρ = 2 | 0.52 | 2.14 | 1.69 | 2.14 | 3.15 | 2.58 | 3.69 | 2.33 |
Under Monotonic Load | ||||||||
CSN | PSN | CSS | PSS | CBN | PBN | CBS | PSS | |
ρ = 0 | 0.58 | 0.06 | 0.39 | −0.38 | 1.64 | 1.33 | 3.25 | 1.70 |
ρ = 0.2 | 0.92 | 0.38 | 0.89 | 0.05 | 1.91 | 1.62 | 3.68 | 2.04 |
ρ = 0.3 | 1.05 | 0.51 | 1.09 | 0.23 | 2.02 | 1.73 | 3.85 | 2.17 |
ρ = 0.5 | 1.28 | 0.72 | 1.41 | 0.50 | 2.19 | 1.91 | 4.13 | 2.39 |
ρ = 1 | 1.65 | 1.08 | 1.95 | 0.98 | 2.49 | 2.22 | 4.60 | 2.77 |
ρ = 1.5 | 1.88 | 1.30 | 2.29 | 1.27 | 2.68 | 2.42 | 4.90 | 3.00 |
ρ = 2 | 2.05 | 1.46 | 2.53 | 1.48 | 2.80 | 2.55 | 5.10 | 3.16 |
Under Cyclic Loads | ||||||||
CSN | PSN | CSS | PSS | CBN | PBN | CBS | PSS | |
ρ = 0 | −0.82 | −0.59 | −0.75 | −1.28 | 0.20 | 0.79 | 0.66 | −0.03 |
ρ = 0.2 | −0.73 | −0.35 | −0.56 | −1.01 | 0.50 | 0.97 | 0.90 | 0.16 |
ρ = 0.3 | −0.70 | −0.26 | −0.48 | −0.90 | 0.62 | 1.04 | 1.00 | 0.23 |
ρ = 0.5 | −0.64 | −0.10 | −0.36 | −0.72 | 0.81 | 1.15 | 1.15 | 0.35 |
ρ = 1 | −0.55 | 0.17 | −0.14 | −0.43 | 1.13 | 1.35 | 1.42 | 0.56 |
ρ = 1.5 | −0.49 | 0.33 | −0.01 | −0.24 | 1.34 | 1.48 | 1.59 | 0.69 |
ρ = 2 | −0.44 | 0.45 | 0.08 | −0.11 | 1.48 | 1.56 | 1.70 | 0.78 |
Monotonic Test | Cyclic Test | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CSN | PSN | CSS | PSS | CBN | PBN | CBS | PBS | CBN | PBN | CBS | PBS | |
ρ = 0 | 1.05 | 0.86 | 1.16 | 0.88 | 0.98 | 0.88 | 1.97 | 1.24 | 0.64 | 0.47 | 0.65 | 0.32 |
ρ = 0.2 | 1.31 | 1.08 | 1.27 | 0.97 | 1.08 | 1.00 | 2.16 | 1.36 | 0.71 | 0.52 | 0.72 | 0.36 |
ρ = 0.3 | 1.36 | 1.12 | 1.32 | 1.01 | 1.12 | 1.04 | 2.25 | 1.42 | 0.74 | 0.54 | 0.75 | 0.37 |
ρ = 0.5 | 1.45 | 1.19 | 1.41 | 1.08 | 1.19 | 1.10 | 2.39 | 1.51 | 0.78 | 0.57 | 0.79 | 0.40 |
ρ = 1 | 1.61 | 1.32 | 1.56 | 1.20 | 1.33 | 1.22 | 2.65 | 1.67 | 0.87 | 0.63 | 0.88 | 0.44 |
ρ = 1.5 | 1.72 | 1.41 | 1.67 | 1.28 | 1.42 | 1.31 | 2.83 | 1.79 | 0.93 | 0.68 | 0.94 | 0.47 |
ρ = 2 | 1.8 | 1.48 | 1.75 | 1.34 | 1.48 | 1.37 | 2.96 | 1.87 | 0.97 | 0.71 | 0.99 | 0.49 |
SPF-Nail | SPF-Screw | BS-Nail | Bs-Screw | |
---|---|---|---|---|
Monotonic load | 0.77 | 0.77 | 0.9 | 0.63 |
Cyclic load | - | - | 0.73 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, J.; Zuo, H. Experimental and Reliability-Based Investigation on Sheathing-to-Framing Joints under Monotonic and Cyclic Loads. Forests 2021, 12, 995. https://doi.org/10.3390/f12080995
Di J, Zuo H. Experimental and Reliability-Based Investigation on Sheathing-to-Framing Joints under Monotonic and Cyclic Loads. Forests. 2021; 12(8):995. https://doi.org/10.3390/f12080995
Chicago/Turabian StyleDi, Jing, and Hongliang Zuo. 2021. "Experimental and Reliability-Based Investigation on Sheathing-to-Framing Joints under Monotonic and Cyclic Loads" Forests 12, no. 8: 995. https://doi.org/10.3390/f12080995
APA StyleDi, J., & Zuo, H. (2021). Experimental and Reliability-Based Investigation on Sheathing-to-Framing Joints under Monotonic and Cyclic Loads. Forests, 12(8), 995. https://doi.org/10.3390/f12080995