Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Diversity
3.2. Population Genetic Structure
4. Discussion
Population Genetic Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Urbaniak, L.; Karliński, L.; Popielarz, R. Variation of morphological needle characters of scots pine (Pinus sylvestris L.) populations in different habitats. Acta Soc. Bot. Pol. 2011, 72, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Cheddadi, R.; Vendramin, G.G.; Litt, T.; François, L.; Kageyama, M.; Lorentz, S.; Laurent, J.-M.; De Beaulieu, J.-L.; Sadori, L.; Jost, A.; et al. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob. Ecol. Biogeogr. 2006, 15, 271–282. [Google Scholar] [CrossRef]
- Kravchenko, A.; Ekart, A.; Larionova, A. Genetic diversity and differentiation of siberian spruce populations at nuclear microsatellite loci. Russ. J. Genet. 2016, 52, 1142–1148. [Google Scholar] [CrossRef]
- Naydenov, K.; Senneville, S.; Beaulieu, J.; Tremblay, F.; Bousquet, J. Glacial vicariance in eurasia: Mitochondrial DNA evidence from scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in asia minor. BMC Evol. Biol. 2007, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, F.; Pinzauti, F.; Kujala, S.T.; González-Martínez, S.C.; Vendramin, G.G. Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv. Genet. Resour. 2011, 4, 231–234. [Google Scholar] [CrossRef]
- Prus-Głowacki, W.; Urbaniak, L.; Bujas, E.; Curtu, A.L. Genetic variation of isolated and peripheral populations of Pinus sylvestris L. from glacial refugia. Flora-Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 150–158. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Liu, Q.; Dai, J. Abietic acid suppresses non-small-cell lung cancer cell growth via blocking ikkbeta/nf-kappab signaling. OncoTargets Ther. 2019, 12, 4825–4837. [Google Scholar] [CrossRef] [Green Version]
- Dering, M.; Kosiński, P.; Wyka, T.P.; Pers-Kamczyc, E.; Boratyński, A.; Boratyńska, K.; Reich, P.B.; Romo, A.; Zadworny, M.; Żytkowiak, R.; et al. Tertiary remnants and holocene colonizers: Genetic structure and phylogeography of scots pine reveal higher genetic diversity in young boreal than in relict mediterranean populations and a dual colonization of fennoscandia. Divers. Distrib. 2017, 23, 540–555. [Google Scholar] [CrossRef] [Green Version]
- Talevi, A.; Cravero, M.S.; Castro, E.A.; Bruno-Blanch, L.E. Discovery of anticonvulsant activity of abietic acid through application of linear discriminant analysis. Bioorganic Med. Chem. Lett. 2007, 17, 1684–1690. [Google Scholar] [CrossRef]
- Ito, Y.; Ito, T.; Yamashiro, K.; Mineshiba, F.; Hirai, K.; Omori, K.; Yamamoto, T.; Takashiba, S. Antimicrobial and antibiofilm effects of abietic acid on cariogenic streptococcus mutans. Odontology 2020, 108, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Jasińska, A.K.; Boratyńska, K.; Dering, M.; Sobierajska, K.I.; Ok, T.; Romo, A.; Boratyński, A. Distance between south-european and south-west asiatic refugial areas involved morphological differentiation: Pinus sylvestris case study. Plant Syst. Evol. 2014, 300, 1487–1502. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, V.; Goryaeva, E.; Vtyurina, O. On strategy of the russian forest sector development. Interexpo GEO-Sib. 2019, 3, 223–230. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Korshikov, I.I.; Kalafat, L.A.; Pirko, Y.V.; Velicoridko, T.I. Population-genetic variation in scots pine (Pinus sylvestris L.) from the main forest regions of ukraine. Russ. J. Genet. 2005, 41, 155–166. [Google Scholar] [CrossRef]
- Vidyakin, A.I.; Semerikov, V.L.; Polezhaeva, M.A.; Dymshakova, O.S. Spread of mitochondrial DNA haplotypes in population of scots pine (Pinus Sylvestris L.) in northern European Russia. Russ. J. Genet. 2012, 48, 1267–1271. [Google Scholar] [CrossRef]
- Sannikov, S.N.; Petrova, I.V. Phylogenogeography and genotaxonomy of Pinus sylvestris L. Populations. Russ. J. Ecol. 2012, 43, 273–280. [Google Scholar] [CrossRef]
- Tóth, E.G.; Köbölkuti, Z.A.; Pedryc, A.; Höhn, M. Evolutionary history and phylogeography of scots pine (Pinus sylvestris L.) in europe based on molecular markers. J. For. Res. 2017, 28, 637–651. [Google Scholar] [CrossRef]
- Williams, J.G.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef] [Green Version]
- Zietkiewicz, E.; Rafalski, A.; Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 1994, 20, 176–183. [Google Scholar] [CrossRef]
- Kalendar, R.; Shustov, A.; Schulman, A. Palindromic sequence-targeted (PST) PCR, version 2: An advanced method for high-throughput targeted gene characterization and transposon display. Front. Plant. Sci. 2021, 12, 691940. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Schulman, A.H. Transposon-based tagging: Irap, remap, and ipbs. Methods Mol. Biol. 2014, 1115, 233–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalendar, R.; Muterko, A.; Boronnikova, S. Retrotransposable elements: DNA fingerprinting and the assessment of genetic diversity. Methods Mol. Biol. 2021, 2222, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Boronnikova, S.; Seppanen, M. Isolation and purification of DNA from complicated biological samples. Methods Mol. Biol. 2021, 2222, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Schulman, A.H. Irap and remap for retrotransposon-based genotyping and fingerprinting. Nat. Protoc. 2006, 1, 2478–2484. [Google Scholar] [CrossRef]
- Sboeva, Y.; Vasil’eva, Y.; Chertov, N.; Pystogova, N.; Boronnikova, S.; Kalendar, R.; Martynenko, N. Molecular genetic identification of scots pine and siberian larch populations in perm krai based on polymorphism of issr-pcr markers. Sib. J. Sci. 2020. [Google Scholar] [CrossRef]
- Abdelaziz, S.M.; Medraoui, L.; Alami, M.; Pakhrou, O.; Makkaoui, M.; Boukhary, A.O.M.S.; Filali-Maltouf, A. Inter simple sequence repeat markers to assess genetic diversity of the desert date (Balanites aegyptiaca Del.) for sahelian ecosystem restoration. Sci. Rep. 2020, 10, 14948. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.C.; Yang, R.C.; Boyle, T.B.J.; Ye, Z.H.; Mao, J.X. Popgene, the user friendly shareware for population genetic analysis. In Molecular Biology and Biotechnology Centre; University of Alberta: Edmonton, AB, Canada, 1997. [Google Scholar]
- Peakall, R.O.D.; Smouse, P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Kimura, M. Diffusion models in population genetics. J. Appl. Probab. 2016, 1, 177–232. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York City, NY, USA, 1987. [Google Scholar] [CrossRef] [Green Version]
- Yanbaev, Y.; Sultanova, R.; Blonskaya, L.; Bakhtina, S.; Tagirova, A.; Tagirov, V.; Kulagin, A. Gene pool of scots pine (Pinus sylvestris L.) under reforestation in extreme environment. Wood Res. 2020, 65, 459–470. [Google Scholar] [CrossRef]
- Hui-Yu, L.; Jing, J.; Gui-Feng, L.; Xu-Jun, M.; Jing-Xiang, D.; Shi-Jie, L. Genetic variation and division of Pinus sylvestris provenances by issr markers. J. For. Res. 2005, 16, 216–218. [Google Scholar] [CrossRef]
- Cipriano, J.; Carvalho, A.; Fernandes, C.; Gaspar, M.J.; Pires, J.; Bento, J.; Roxo, L.; Louzada, J.; Lima-Brito, J. Evaluation of genetic diversity of portuguese Pinus sylvestris L. Populations based on molecular data and inferences about the future use of this germplasm. J. Genet. 2013, 92, e41–e48. [Google Scholar] [CrossRef]
- Vidyakin, A.I.; Boronnikova, S.V.; Nechayeva, Y.S.; Pryshnivskaya, Y.V.; Boboshina, I.V. Genetic variation, population structure, and differentiation in scots pine (Pinus sylvestris L.) from the northeast of the russian plain as inferred from the molecular genetic analysis data. Russ. J. Genet. 2015, 51, 1213–1220. [Google Scholar] [CrossRef]
- Hellmann, J.J.; Pineda-Krch, M. Constraints and reinforcement on adaptation under climate change: Selection of genetically correlated traits. Biol. Conserv. 2007, 137, 599–609. [Google Scholar] [CrossRef]
- Tóth, E.G.; Vendramin, G.G.; Bagnoli, F.; Cseke, K.; Höhn, M. High genetic diversity and distinct origin of recently fragmented scots pine (Pinus sylvestris L.) populations along the carpathians and the pannonian basin. Tree Genet. Genomes 2017, 13. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Linhart, Y.B.; Mitton, J.B. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu. Rev. Ecol. Syst. 1979, 10, 173–200. [Google Scholar] [CrossRef]
- Semerikov, V.L.; Semerikova, S.A.; Dymshakova, O.S.; Zatsepina, K.G.; Tarakanov, V.V.; Tikhonova, I.V.; Ekart, A.K.; Vidyakin, A.I.; Jamiyansuren, S.; Rogovtsev, R.V.; et al. Microsatellite loci polymorphism of chloroplast DNA of scots pine (Pinus sylvestris L.) in Asia and Eastern Europe. Russ. J. Genet. 2014, 50, 577–585. [Google Scholar] [CrossRef]
- Lendvay, B.; Höhn, M.; Brodbeck, S.; Mîndrescu, M.; Gugerli, F. Genetic structure in Pinus cembra from the Carpathian Mountains inferred from nuclear and chloroplast microsatellites confirms post-glacial range contraction and identifies introduced individuals. Tree Genet. Genomes 2014, 10, 1419–1433. [Google Scholar] [CrossRef] [Green Version]
- Poljak, I.; Idžojtić, M.; Vuković, M.; Vidaković, A.; Vukelić, J. Variability of the populations of Scots pine (Pinus sylvestris L.) in the northwestern part of mala kapela according to the morphological characteristics of the needles and cones. Šumarski List 2020, 144, 539–548. [Google Scholar] [CrossRef]
- Rajora, O.; DeVerno, L.; Mosseler, A.; Innes, D. Genetic diversity and population structure of disjunct Newfoundland and central Ontario populations of eastern white pine (Pinus strobus). Can. J. Bot. 1998, 3, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Chhatre, V.; Rajora, O. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, eastern white pine (Pinus strobus) from Northern Ontario. PLoS ONE 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Ledig, F. Founder effects and the genetic structure of Coulter pine. J. Hered. 2000, 4, 307–315. [Google Scholar] [CrossRef]
- Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 1965, 395–420. [Google Scholar] [CrossRef]
- Șofletea, N.; Mihai, G.; Ciocîrlan, E.; Curtu, A.L. Genetic diversity and spatial genetic structure in isolated scots pine (Pinus sylvestris L.) populations native to eastern and southern carpathians. Forests 2020, 11, 1047. [Google Scholar] [CrossRef]
- Sannikov, S.N.; Petrova, I.V.; Egorov, E.V.; Sannikova, N.S. Searching for and revealing the system of pleistocene refugia for the species Pinus sylvestris L. Russ. J. Ecol. 2020, 51, 215–223. [Google Scholar] [CrossRef]
- Sannikov, S.N.; Petrova, I.V.; Egorov, E.V.; Sannikova, N.S. A system of pleistocene refugia for Pinus sylvestris L. In the southern marginal part of the species range. Russ. J. Ecol. 2014, 45, 167–173. [Google Scholar] [CrossRef]
Primer ID | Sequence 5′–3′ | Tm (°C) | Ta (°C) | Total Bands | PIC * |
---|---|---|---|---|---|
ISSR-1 ((AC)8T) | ACACACACACACACACT | 55.0 | 56 | 25 | 0.359 |
CR-212 ((CT)8TG) | CTCTCTCTCTCTCTCTTG | 55.9 | 56 | 28 | 0.317 |
CR-215 ((CA)6GT) | CACACACACACAGT | 52.6 | 56 | 26 | 0.388 |
M27 ((GA)8C) | GAGAGAGAGAGAGAGAC | 54.9 | 52 | 29 | 0.402 |
X10 ((AGC)6C) | AGCAGCAGCAGCAGCAGCC | 72.4 | 64 | 24 | 0.319 |
Populations | He | ne | I | R |
---|---|---|---|---|
Ps_Br | 0.192 (0.016) | 1.318 (0.031) | 0.295 (0.023) | 2 |
Ps_Pl | 0.139 (0.016) | 1.225 (0.028) | 0.214 (0.023) | 5 |
Ps_Gn | 0.119 (0.016) | 1.201 (0.029) | 0.180 (0.023) | 0 |
Ps_Kg | 0.105 (0.015) | 1.173 (0.026) | 0.160 (0.022) | 1 |
Ps_Uk | 0.097 (0.014) | 1.158 (0.025) | 0.148 (0.021) | 0 |
Ps_Bs | 0.098 (0.014) | 1.157 (0.024) | 0.151 (0.021) | 0 |
Ps_Dr | 0.227 (0.016) | 1.374 (0.030) | 0.344 (0.023) | 0 |
Ps_Ur | 0.239 (0.017) | 1.408 (0.032) | 0.357 (0.024) | 0 |
Ps_Sl | 0.217 (0.017) | 1.360 (0.030) | 0.329 (0.024) | 1 |
Ps_Bh | 0.236 (0.018) | 1.410 (0.033) | 0.349 (0.025) | 0 |
Total | 0.167 (0.005) | 1.279 (0.010) | 0.253 (0.008) | 9 |
Subdivision Indicator | df | SS | MS | Dispersion | % | p |
---|---|---|---|---|---|---|
Among populations | 9 | 3213.361 | 357.040 | 11.748 | 48% | <0.001 |
Within populations | 283 | 3658.325 | 12.927 | 12.927 | 52% | <0.001 |
Among groups | 1 | 1418.914 | 1418.914 | 8.414 | 29% | <0.001 |
Among populations | 8 | 1794.447 | 224.306 | 7.226 | 26% | <0.001 |
Within populations | 283 | 3658.325 | 12.927 | 12.927 | 45% | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilyeva, Y.; Chertov, N.; Nechaeva, Y.; Sboeva, Y.; Pystogova, N.; Boronnikova, S.; Kalendar, R. Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain. Forests 2021, 12, 999. https://doi.org/10.3390/f12080999
Vasilyeva Y, Chertov N, Nechaeva Y, Sboeva Y, Pystogova N, Boronnikova S, Kalendar R. Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain. Forests. 2021; 12(8):999. https://doi.org/10.3390/f12080999
Chicago/Turabian StyleVasilyeva, Yulia, Nikita Chertov, Yulia Nechaeva, Yana Sboeva, Nina Pystogova, Svetlana Boronnikova, and Ruslan Kalendar. 2021. "Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain" Forests 12, no. 8: 999. https://doi.org/10.3390/f12080999
APA StyleVasilyeva, Y., Chertov, N., Nechaeva, Y., Sboeva, Y., Pystogova, N., Boronnikova, S., & Kalendar, R. (2021). Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain. Forests, 12(8), 999. https://doi.org/10.3390/f12080999