Cone-Bearing Branches of Pinus koraiensis Are Not Carbon Autonomous during Cone Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampled Trees
2.2. Experiment 1
2.2.1. Girdling and Defoliation Treatments
2.2.2. Non-Structural Carbohydrates
2.3. Experiment 2
2.3.1. 13CO2 Pulse Labeling
2.3.2. Isotopic Analysis
2.4. Statistical Analyses
3. Results
3.1. Experiment 1
3.1.1. Branch Growth
3.1.2. Reproductive Output
3.1.3. NSC Concentration and Content
3.2. Experiment 2
3.2.1. δ13C in Needles, Twigs, and Cones
3.2.2. 13C-photoassimilate Allocation
4. Discussion
4.1. Girdling and Defoliation Denote Translocation of Photoassimilates among Neighboring Branches
4.2. Branch C Autonomy Depends on the Source-Sink Balance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elloumi, O.; Ghrab, M.; Mimoun, M.B. Effects of flower buds removal on seasonal starch storage and mobilization in fruiting and non-fruiting branches of pistachio trees cv. Mateur under dry and warm climate. Sci. Hortic. 2014, 172, 19–25. [Google Scholar] [CrossRef]
- Pearse, I.S.; Koenig, W.D.; Kelly, D. Mechanisms of mast seeding: Resources, weather, cues, and selection. New Phytol. 2016, 212, 546–562. [Google Scholar] [CrossRef]
- Knoblauch, M.; Knoblauch, J.; Mullendore, D.L.; Savage, J.A.; Babst, B.A.; Beecher, S.D.; Dodgen, A.C.; Jensen, K.H.; Holbrook, N.M. Testing the Münch hypothesis of long distance phloem transport in plants. Elife 2016, 5, e15341. [Google Scholar] [CrossRef] [Green Version]
- Lough, T.J.; Lucas, W.J. Integrative plant biology: Role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 2006, 57, 203–232. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.A.; Schulz, A. Macromolecular trafficking in the phloem. Trends Plant Sci. 1999, 4, 354–360. [Google Scholar] [CrossRef]
- Gifford, R.M.; Evans, L.T. Photosynthesis, carbon partitioning, and yield. Annu. Rev. Plant Biol. 1981, 32, 485–509. [Google Scholar] [CrossRef]
- Watson, M.A. Integrated physiological units in plants. Trends Ecol. Evol. 1986, 1, 119–123. [Google Scholar] [CrossRef]
- Hoch, G. Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant Cell Environ. 2005, 28, 651–659. [Google Scholar] [CrossRef]
- Lacointe, A.; Deleens, E.; Ameglio, T.; Joanis, B.S.; Lelarge, C.; Vandame, M.; Song, G.C.; Daudet, F.A. Testing the branch autonomy theory: A 13C/14C double-labelling experiment on differentially shaded branches. Plant Cell Environ. 2004, 27, 1159–1168. [Google Scholar] [CrossRef]
- Hasegawa, S.; Koba, K.; Tayasu, I.; Takeda, H.; Haga, H. Carbon autonomy of reproductive shoots of Siberian alder (Alnus hirsuta var. sibirica). J. Plant Res. 2003, 116, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Sprugel, D.; Hinckley, T.; Schaap, W. The theory and practice of branch autonomy. Annu. Rev. Ecol. Evol. Syst. 1991, 22, 309–334. [Google Scholar] [CrossRef]
- Obeso, J. Effects of defoliation and girdling on fruit production in Ilex aquifolium. Funct. Ecol. 1998, 12, 486–491. [Google Scholar] [CrossRef]
- Miyazaki, Y. Dynamics of internal carbon resources during masting behavior in trees. Environ. Res. 2013, 28, 143–150. [Google Scholar] [CrossRef]
- Oitate, H.; Noguchi, K.; Sone, K.; Terashima, I.; Suzuki, A.A. Patterns of photoassimilate translocation to reproductive shoots from adjacent shoots in Camellia sasanqua by manipulation of sink-source balance between the shoots. J. Plant Res. 2011, 124, 131–136. [Google Scholar] [CrossRef]
- Li, Y.N.; Yang, D.M.; Sun, S.C.; Gao, X.M. Effects of twig size on biomass allocation within twigs and on Lamina area supporting efficiency in Rhododendron: Allometric scaling analyses. Chin. J. Plant Ecol. 2008, 32, 1175. [Google Scholar] [CrossRef]
- Millard, P.; Grelet, G. Nitrogen storage and remobilization by trees: Ecophysiological relevance in a changing world. Tree physiol. 2010, 30, 1083–1095. [Google Scholar] [CrossRef] [Green Version]
- Weiskittel, A.R.; Maguire, D.A.; Monserud, R.A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: Implications for predicting tree growth. For. Ecol. Manag. 2007, 251, 182–194. [Google Scholar] [CrossRef]
- Crone, E.E.; Rapp, J.M. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann. N. Y. Acad. Sci. 2014, 1322, 21–34. [Google Scholar] [CrossRef]
- Asao, S.; Ryan, M.G. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees. Tree Physiol. 2015, 35, 608–620. [Google Scholar] [CrossRef]
- Moreira, R.A.; Fernandes, D.R.; da Cruz, M.d.C.M.; Lima, J.E.; de Oliveira, A.F. Water restriction, girdling and paclobutrazol on flowering and production of olive cultivars. Sci. Hortic. 2016, 200, 197–204. [Google Scholar] [CrossRef]
- Mediene, S.; Jordan, M.O.; Pagès, L.; Lebot, J.; Adamowicz, S. The influence of severe shoot pruning on growth, carbon and nitrogen status in young peach trees (Prunus persica). Tree Physiol. 2002, 22, 1289–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, J.C.; Rodríguez-Calcerrada, J.; Pita, P.; Saurer, M.; Oleksyn, J.; Gil, L. Carbohydrate dynamics in a resprouting species after severe aboveground perturbations. Eur. J. For. Res. 2020, 139, 841–852. [Google Scholar] [CrossRef]
- Piper, F.I.; Gundale, M.J.; Fajardo, A. Extreme defoliation reduces tree growth but not C and N storage in a winter-deciduous species. Ann. Bot. 2015, 115, 1093–1103. [Google Scholar] [CrossRef]
- Rubio-Cuadrado, Á.; Gómez, C.; Rodríguez-Calcerrada, J.; Perea, R.; Gordaliza, G.G.; Camarero, J.J.; Montes, F.; Gil, L. Differential response of oak and beech to late frost damage: An integrated analysis from organ to forest. Agric. For. Meteorol. 2021, 297, 108243. [Google Scholar] [CrossRef]
- Barry, K.M.; Quentin, A.; Eyles, A.; Pinkard, E.A. Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladière. Tree Physiol. 2012, 32, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Pinkard, E.A.; Eyles, A.; O’Grady, A.P. Are gas exchange responses to resource limitation and defoliation linked to source: Sink relationships? Plant Cell Environ. 2011, 34, 1652–1665. [Google Scholar] [CrossRef]
- Agusti, M.; Andreu, I.; Juan, M.; Almela, V.; Zacarias, L. Effects of ringing branches on fruit size and maturity of peach and nectarine cultivars. J. Hortic. Sci. Biotechnol. 1998, 73, 537–540. [Google Scholar] [CrossRef]
- Poirier-Pocovi, M.; Lothier, J.; Buck-Sorlin, G. Modelling temporal variation of parameters used in two photosynthesis models: Influence of fruit load and girdling on leaf photosynthesis in fruit-bearing branches of apple. Ann. Bot. 2018, 121, 821–832. [Google Scholar] [CrossRef]
- Pasqualotto, G.; Carraro, V.; De Gregorio, T.; Huerta, E.S.; Anfodillo, T. Girdling of fruit-bearing branches of Corylus avellana reduces seed mass while defoliation does not. Sci. Hortic. 2019, 255, 37–43. [Google Scholar] [CrossRef]
- Ge, Z.M.; Zhou, X.; Kellomäki, S.; Biasi, C.; Wang, K.Y.; Peltola, H.; Martikainen, P.J. Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environ. Exp. Bot. 2012, 75, 150–158. [Google Scholar] [CrossRef]
- Kagawa, A.; Sugimoto, A.; Maximov, T.C. Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytol. 2006, 171, 793–804. [Google Scholar] [CrossRef]
- Blessing, C.H.; Werner, R.A.; Siegwolf, R.; Buchmann, N. Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiol. 2015, 35, 585–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrichkova, O.; Liberati, D.; de Dato, G.; Jaoudé, R.A.; Brugnoli, E.; de Angelis, P.; Guidolotti, G.; Pausch, J.; Spohn, M.; Tian, J.; et al. Effects of rain shortage on carbon allocation, pools and fluxes in a Mediterranean shrub ecosystem—A 13C labelling field study. Sci. Total Environ. 2018, 627, 1242–1252. [Google Scholar] [CrossRef]
- Hoch, G.; Siegwolf, R.T.; Keel, S.G.; Körner, C.; Han, Q. Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 2013, 171, 653–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streit, K.; Rinne, K.T.; Hagedorn, F.; Dawes, M.A.; Saurer, M.; Hoch, G.; Werner, R.A.; Buchmann, N.; Siegwolf, R.T. Tracing fresh assimilates through Larix decidua exposed to elevated CO2 and soil warming at the alpine treeline using compound-specific stable isotope analysis. New Phytol. 2013, 197, 838–849. [Google Scholar] [CrossRef] [Green Version]
- Volpe, G.; Lo Bianco, R.; Rieger, M. Carbon autonomy of peach shoots determined by 13C-photoassimilate transport. Tree Physiol. 2008, 28, 1805–1812. [Google Scholar] [CrossRef]
- Zhang, C.; Tanabe, K. Partitioning of 13C-photosynthates from different current shoots neighboring with fruiting spur in later-maturing Japanese pear during the period of rapid fruit growth. Sci. Hortic. 2008, 117, 142–150. [Google Scholar] [CrossRef]
- Sha, J.; Wang, F.; Xu, X.; Chen, Q.; Zhu, Z.; Jiang, Y.; and Ge, S. Studies on the translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in ‘Fuji’apple. Plant Physiol. Biochem. 2020, 154, 636–645. [Google Scholar] [CrossRef]
- Desalme, D.; Priault, P.; Gerant, D.; Dannoura, M.; Maillard, P.; Plain, C.; Epron, D. Seasonal variations drive short-term dynamics and partitioning of recently assimilated carbon in the foliage of adult beech and pine. New Phytol. 2017, 213, 140–153. [Google Scholar] [CrossRef]
- Yin, D.; Wu, H.; Zhang, J.; Ge, W.; Zhou, Z.; Shen, H. Effects of girdling and defoliation on the growth of female cones and branches and nutrient content in different tissues and organs of Pinus koraiensis. Chin. J. Appl. Ecol. 2019, 30, 3671–3680. [Google Scholar] [CrossRef]
- Wu, H.; Yin, D.; Rodríguez-Calcerrada, J.; Zhang, J.; Gil, L.; Zhang, P.; Shen, H. Cone-bearing effects on photosynthetic traits do not change with needle age in Pinus koraiensis trees. New Forests. 2021, 1–20. [Google Scholar] [CrossRef]
- Xu, D.; Yan, H. A study of the impacts of climate change on the geographic distribution of Pinus koraiensis in China. Environ. Int. 2001, 27, 201–205. [Google Scholar] [CrossRef]
- Nergiz, C.; Dönmez, I. Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem. 2004, 86, 365–368. [Google Scholar] [CrossRef]
- Mei, L.; Xiong, Y.; Gu, J.; Wang, Z.; Guo, D. Whole-tree dynamics of non-structural carbohydrate and nitrogen pools across different seasons and in response to girdling in two temperate trees. Oecologia 2015, 177, 333–344. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Li, Y.; Li, Y.; Kong, D.; Wu, R. Carbohydrate accumulation may be the proximate trigger of anthocyanin biosynthesis under autumn conditions in Begonia semperflorens. Plant Biol (Stuttg.) 2013, 15, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Hiura, T.; Funada, R. Allocation of photo-assimilated 13C from reproductive and non-reproductive shoots to fruits in Styrax obassia. Plant Species Biol. 2007, 22, 53–57. [Google Scholar] [CrossRef]
- Salomon, R.L.; De Roo, L.; Bode, S.; Boeckx, P.; Steppe, K. Efflux and assimilation of xylem-transported CO2 in stems and leaves of tree species with different wood anatomy. Plant Cell Environ. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kidombo, S.D.; Dean, T.J. Growth response of branches to variation in the intra-and interbranch supply of photosynthate. Trees 2018, 32, 1291–1300. [Google Scholar] [CrossRef]
- Hoch, G.; Keel, S.G. 13C labelling reveals different contributions of photoassimilates from infructescences for fruiting in two temperate forest tree species. Plant Biol. (Stuttg.) 2006, 8, 606–614. [Google Scholar] [CrossRef]
- Ávila, E.; Herrera, A.; Tezara, W. Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica 2014, 52, 3–15. [Google Scholar] [CrossRef]
- De Roo, L.; Salomon, R.L.; Oleksyn, J.; Steppe, K. Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. New Phytol. 2020, 228, 70–81. [Google Scholar] [CrossRef]
- Vaast, P.; Angrand, J.; Franck, N.; Dauzat, J.; Genard, M. Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field. Tree Physiol. 2005, 25, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Żywiec, M.; Zielonka, T. Does a heavy fruit crop reduce the tree ring increment? Results from a 12-year study in a subalpine zone. Trees 2013, 27, 1365–1373. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yin, D. Effects of female cone development on the vegetative growth and biomass accumulation of shoots and needles of Pinus koraiensis. Chin. J. Ecol. 2019, 38, 1646–1652. [Google Scholar] [CrossRef]
- Han, Q.; Kabeya, D. Recent developments in understanding mast seeding in relation to dynamics of carbon and nitrogen resources in temperate trees. Environ. Res. 2017, 32, 771–778. [Google Scholar] [CrossRef]
- Quentin, A.G.; Pinkard, E.A.; Ryan, M.G.; Tissue, D.T.; Baggett, L.S.; Adams, H.D.; Maillard, P.; Marchand, J.; Landhäusser, S.M.; Lacointe, A.; et al. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. 2015, 35, 1146–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Vilalta, J.; Sala, A.; Asensio, D.; Galiano, L.; Hoch, G.; Palacio, S.; Piper, F.I.; Lloret, F. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecol. Monogr. 2016, 86, 495–516. [Google Scholar] [CrossRef]
- Mitchell, P.J.; O’Grady, A.P.; Tissue, D.T.; Worledge, D.; Pinkard, E.A. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiol. 2014, 34, 443–458. [Google Scholar] [CrossRef]
- Hoch, G.; Richter, A.; Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003, 26, 1067–1081. [Google Scholar] [CrossRef]
- Hartmann, H.; Moura, C.F.; Anderegg, W.R.; Ruehr, N.K.; Salmon, Y.; Allen, C.D.; Arndt, S.K.; Breshears, D.D.; Davi, H.; Galbraith, D.; et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018, 218, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epron, D.; Bahn, M.; Derrien, D.; Lattanzi, F.A.; Pumpanen, J.; Gessler, A.; Hogberg, P.; Maillard, P.; Dannoura, M.; Gérant, D.; et al. Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects. Tree Physiol. 2012, 32, 776–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Peng, C.X.; Wang, H.; Shen, H.L.; Yang, L. Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. J. For. Res. (Harbin) 2020, 32, 483–491. [Google Scholar] [CrossRef]
- Spann, T.M.; Beede, R.H.; DeJong, T.M. Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees. Tree Physiol. 2008, 28, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Q.; Kagawa, A.; Kabeya, D.; Inagaki, Y. Reproduction-related variation in carbon allocation to woody tissues in Fagus crenata using a natural 13C approach. Tree Physiol. 2016, 36, 1343–1352. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Guo, S. Patterns of photoassimilate translocation between shoots in Chinese chestnut trees during flowering and fruit growth. Aust. For. 2015, 78, 86–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Yin, D.; Salomón, R.L.; Rodríguez-Calcerrada, J.; Zhang, J.; Zhang, P.; Shen, H. Cone-Bearing Branches of Pinus koraiensis Are Not Carbon Autonomous during Cone Development. Forests 2021, 12, 1257. https://doi.org/10.3390/f12091257
Wu H, Yin D, Salomón RL, Rodríguez-Calcerrada J, Zhang J, Zhang P, Shen H. Cone-Bearing Branches of Pinus koraiensis Are Not Carbon Autonomous during Cone Development. Forests. 2021; 12(9):1257. https://doi.org/10.3390/f12091257
Chicago/Turabian StyleWu, Haibo, Dongsheng Yin, Roberto Luis Salomón, Jesús Rodríguez-Calcerrada, Jianying Zhang, Peng Zhang, and Hailong Shen. 2021. "Cone-Bearing Branches of Pinus koraiensis Are Not Carbon Autonomous during Cone Development" Forests 12, no. 9: 1257. https://doi.org/10.3390/f12091257
APA StyleWu, H., Yin, D., Salomón, R. L., Rodríguez-Calcerrada, J., Zhang, J., Zhang, P., & Shen, H. (2021). Cone-Bearing Branches of Pinus koraiensis Are Not Carbon Autonomous during Cone Development. Forests, 12(9), 1257. https://doi.org/10.3390/f12091257