Rapid Static Positioning Using a Four System GNSS Receivers in the Forest Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguiar, A.S.; dos Santos, F.N.; Cunha, J.B.; Sobreira, H.; Sousa, A.J. Localization and Mapping for Robots in Agriculture and Forestry: A Survey. Robotics 2020, 9, 97. [Google Scholar] [CrossRef]
- Erfanifard, Y.; Kraszewski, B.; Stereńczak, K. Integration of Remote Sensing in Spatial Ecology: Assessing the Interspecific Interactions of Two Plant Species in a Semi-Arid Woodland Using Unmanned Aerial Vehicle (UAV) Photogrammetric Data. Oecologia 2021, 196, 115–130. [Google Scholar] [CrossRef]
- Stereńczak, K.; Kraszewski, B.; Mielcarek, M.; Piasecka, Ż.; Lisiewicz, M.; Heurich, M. Mapping Individual Trees with Airborne Laser Scanning Data in an European Lowland Forest Using a Self-Calibration Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102191. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Malenovsky, Z.; Turner, D.; Vopenka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Modzelewska, A.; Fassnacht, F.E.; Stereńczak, K. Tree Species Identification within an Extensive Forest Area with Diverse Management Regimes Using Airborne Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101960. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Srivastava, P.K. GPS and GNSS Technology in Geosciences; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 978-0-12-819693-9. [Google Scholar]
- Deckert, C.; Bolstad, P.V. Forest Canopy, Terrain, and Distance Effects on Global Positioning System Point Accuracy. Photogramm. Eng. Remote Sens. 1996, 62, 317–321. [Google Scholar]
- Naesset, E. Effects of Differential Single- and Dual-Frequency GPS and GLONASS Observations on Point Accuracy under Forest Canopies. Photogramm. Eng. Remote Sens. 2001, 67, 1021–1026. [Google Scholar]
- Liu, J.; Hyyppä, J.; Yu, X.; Jaakkola, A.; Liang, X.; Kaartinen, H.; Kukko, A.; Zhu, L.; Wang, Y.; Hyyppä, H. Can Global Navigation Satellite System Signals Reveal the Ecological Attributes of Forests? Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 74–79. [Google Scholar] [CrossRef]
- Drosos, V.C.; Kantartzis, A.; Giovannopoulos, R. High Technology in Forest Engineer Works. For. Ideas 2011, 17, 174–182. [Google Scholar]
- Kaartinen, H.; Hyyppä, J.; Vastaranta, M.; Kukko, A.; Jaakkola, A.; Yu, X.; Pyörälä, J.; Liang, X.; Liu, J.; Wang, Y.; et al. Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies. Forests 2015, 6, 3218-3236. [Google Scholar] [CrossRef]
- Sawaguchi, I.; Saitoh, Y.; Tatsukawa, S. A Study of the Effects of Stems and Canopies on the Signal to Noise Ratio of GPS Signals. J. For. Res. 2005, 10, 395–401. [Google Scholar] [CrossRef]
- HuiChun, Z.; HongPing, Z.; JiaQiang, Z. Effects of the site condition and positioning mode on GPS performance for precision forestry. J. Nanjing For. Univ. Nat. Sci. Ed. 2014, 38, 72–76. [Google Scholar]
- Uzodinma, V.N.; Nwafor, U. Degradation of GNSS Accuracy by Multipath and Tree Canopy Distortions in a School Environment. AJAS 2018, 6, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Ziedan, N.I. Multi-Frequency Combined Processing for Direct and Multipath Signals Tracking Based on Particle Filtering. In Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 21–23. [Google Scholar]
- Rabaoui, A.; Viandier, N.; Duflos, E.; Marais, J.; Vanheeghe, P. Dirichlet Process Mixtures for Density Estimation in Dynamic Nonlinear Modeling: Application to GPS Positioning in Urban Canyons. IEEE Trans. Signal Process. 2012, 60, 1638–1655. [Google Scholar] [CrossRef] [Green Version]
- Jgouta, M.; Nsiri, B. Statistical Estimation of GNSS Pseudo-Range Errors. Procedia Comput. Sci. 2015, 73, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Iliev, T.B.; Stoyanov, I.S.; Sokolov, S.A.; Beloev, I.H. The Influence of Multipath Propagation of the Signal on the Accuracy of the GNSS Receiver. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September 2020; IEEE: New York, NY, USA, 2020; pp. 508–511. [Google Scholar]
- Cheng, C.; Tourneret, J.-Y.; Pan, Q.; Calmettes, V. Detecting, Estimating and Correcting Multipath Biases Affecting GNSS Signals Using a Marginalized Likelihood Ratio-Based Method. Signal Process. 2016, 118, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.S.; Hasegawa, H.; Yoshimura, T. GPS Accuracy in Using Antenna Pole under Tree Canopies and Usability of Signal Interruption Probability (SIP) for Accuracy Estimation. J. Jpn. For. Eng. Soc. 2013, 28, 181–186. [Google Scholar]
- McGaughey, R.J.; Ahmed, K.; Andersen, H.-E.; Reutebuch, S.E. Effect of Occupation Time on the Horizontal Accuracy of a Mapping-Grade GNSS Receiver under Dense Forest Canopy. Photogramm. Eng. Remote Sens. 2017, 83, 861–868. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Li, X.; Li, X.; Lu, C.; Liu, J.; Wang, Q. Satellite Availability and Point Positioning Accuracy Evaluation on a Global Scale for Integration of GPS, GLONASS, BeiDou and Galileo. Adv. Space Res. 2019, 63, 2696–2710. [Google Scholar] [CrossRef]
- Karimi, H. An Analysis of Satellite Visibility and Single Point Positioning with GPS, GLONASS, Galileo, and BeiDou-2/3. Appl. Geomat. 2021, 13, 781–791. [Google Scholar] [CrossRef]
- Lee, W.-J.; Yu, W.-S.; Choi, Y.-S.; Yoon, H.-S. Improvement of Network RTK Positioning in Urban and Forest Land Using BeiDou. J. Digit. Content Soc. 2020, 21, 2057–2064. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Y.; Sun, B. Basic Performance and Future Developments of BeiDou Global Navigation Satellite System. Satell. Navig. 2020, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Xi, R.; Chen, H.; Xiao, Y. Accuracy Analysis of Continuous Deformation Monitoring Using BeiDou Navigation Satellite System at Middle and High Latitudes in China. Adv. Space Res. 2017, 59, 843–857. [Google Scholar] [CrossRef]
- Yan, F.; Hu, X.; Xu, L.; Wu, Y. Construction and Accuracy Analysis of a BDS/GPS-Integrated Positioning Algorithm for Forests. J. Theory Appl. For. Eng. 2021, 42, 321–335. [Google Scholar] [CrossRef]
- Paziewski, J.; Wielgosz, P. Assessment of GPS + Galileo and Multi-Frequency Galileo Single-Epoch Precise Positioning with Network Corrections. GPS Solut. 2014, 18, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal Characterization and Assessment of Code GNSS Positioning with Low-Power Consumption Smartphones. GPS Solut. 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- Tomaštík, J.; Varga, M. Practical Applicability of Processing Static, Short-Observation-Time Raw GNSS Measurements Provided by a Smartphone under Tree Vegetation. Measurement 2021, 178, 109397. [Google Scholar] [CrossRef]
- Dabove, P.; Di Pietra, V. Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones. Sensors 2019, 19, 4302. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A.; Guerra-Hernández, J.; Cosenza, D.N.; Sandoval, V. The Role of Improved Ground Positioning and Forest Structural Complexity When Performing Forest Inventory Using Airborne Laser Scanning. Remote Sens. 2020, 12, 413. [Google Scholar] [CrossRef] [Green Version]
- Bolibok, L.; Brach, M. Application of LiDAR Data for the Modeling of Solar Radiation in Forest Artificial Gaps—A Case Study. Forests 2020, 11, 821. [Google Scholar] [CrossRef]
- Brüllhardt, M.; Rotach, P.; Schleppi, P.; Bugmann, H. Vertical Light Transmission Profiles in Structured Mixed Deciduous Forest Canopies Assessed by UAV-Based Hemispherical Photography and Photogrammetric Vegetation Height Models. Agric. For. Meteorol. 2020, 281, 107843. [Google Scholar] [CrossRef]
- Gonsamo, A.; Walter, J.-M.; Chen, J.M.; Pellikka, P.; Schleppi, P. A Robust Leaf Area Index Algorithm Accounting for the Expected Errors in Gap Fraction Observations. Agric. For. Meteorol. 2018, 248, 197–204. [Google Scholar] [CrossRef]
- Bosy, J.; Graszka, W.; Leończyk, M. ASG-EUPOS-a Multifunctional Precise Satellite Positioning System in Poland. Eur. J. Navig. 2007, 5, 2–6. [Google Scholar]
- Kršák, B.; Blišťan, P.; Pauliková, A.; Puškárová, P.; Kovanič, ľ.; Palková, J.; Zelizňaková, V. Use of Low-Cost UAV Photogrammetry to Analyze the Accuracy of a Digital Elevation Model in a Case Study. Measurement 2016, 91, 276–287. [Google Scholar] [CrossRef]
- Migoń, P.; Kasprzak, M. Pathways of Geomorphic Evolution of Sandstone Escarpments in the Góry Stołowe Tableland (SW Poland)—Insights from LiDAR-Based High-Resolution DEM. Geomorphology 2016, 260, 51–63. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Dong, D.; Li, H.; Han, L.; Chen, W.; Wang, M.; Wang, J.; Dong, D.; Li, H.; et al. Comparison of Three Methods for Estimating GPS Multipath Repeat Time. Remote Sens. 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Wübbena, G.; Schmitz, M.; Menge, F.; Seeber, G.; Völksen, C. A New Approach for Field Calibration of Absolute GPS Antenna Phase Center Variations. Navigation 1997, 44, 247–255. [Google Scholar] [CrossRef]
- Giremus, A.; Tourneret, J.-Y.; Calmettes, V. A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements. IEEE Trans. Signal Process. 2007, 55, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Liu, C.; Chen, T.; Zhao, X.; Liu, C.; Hu, H.; Zhou, T.; Xin, H. Real-Time Multipath Mitigation in Multi-GNSS Short Baseline Positioning via CNN-LSTM Method. Math. Probl. Eng. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Narayana, S.; Prasad, R.V.; Rao, V.; Mottola, L.; Prabhakar, T.V. Hummingbird: Energy Efficient GPS Receiver for Small Satellites. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 16 April 2020; ACM: New York, NY, USA, 2020; pp. 1–13. [Google Scholar]
- Jiménez-Martínez, M.J.; Farjas-Abadia, M.; Quesada-Olmo, N. An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices. Remote Sens. 2021, 13, 1149. [Google Scholar] [CrossRef]
- Uysal, M.; Toprak, A.S.; Polat, N. DEM Generation with UAV Photogrammetry and Accuracy Analysis in Sahitler Hill. Measurement 2015, 73, 539–543. [Google Scholar] [CrossRef]
- Valbuena, R.; Mauro, F.; Rodriguez-Solano, R.; Manzanera, J.A. Accuracy and Precision of GPS Receivers under Forest Canopies in a Mountainous Environment. Span. J. Agric. Res. 2010, 8, 1047–1057. [Google Scholar] [CrossRef]
- Akbulut, R.; Ucar, Z.; Bettinger, P.; Merry, K.; Obata, S. Effects of Forest Thinning on Static Horizontal Positions Collected with a Mapping-Grade GNSS Receiver. Math. Comput. For. Nat. Resour. Sci. 2017, 9, 14. [Google Scholar]
- Bakula, M.; Przestrzelski, P.; Kazmierczak, R. Reliable Technology of Centimeter GPS/GLONASS Surveying in Forest Environments. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1029–1038. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and Reliability of Multi-GNSS Real-Time Precise Positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Santra, A.; Mahato, S.; Mandal, S.; Dan, S.; Verma, P.; Banerjee, P.; Bose, A. Augmentation of GNSS Utility by IRNSS/NavIC Constellation over the Indian Region. Adv. Space Res. 2019, 63, 2995–3008. [Google Scholar] [CrossRef]
- Edson, C.; Wing, M.G. Tree Location Measurement Accuracy with a Mapping-Grade GPS Receiver under Forest Canopy. For. Sci. 2012, 58, 567–576. [Google Scholar] [CrossRef]
- Danskin, S.D.; Bettinger, P.; Jordan, T.R.; Cieszewski, C. A Comparison of GPS Performance in a Southern Hardwood Forest: Exploring Low-Cost Solutions for Forestry Applications. South. J. Appl. For. 2009, 33, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Holden, N.M.; Martin, A.A.; Owende, P.M.O.; Ward, S.M. A Method for Relating GPS Performance to Forest Canopy. Int. J. For. Eng. 2001, 12, 51–56. [Google Scholar] [CrossRef]
- Bettinger, P.; Merry, K.L. Influence of the Juxtaposition of Trees on Consumer-Grade GPS Position Quality. Math. Comput. For. Nat. Resour. Sci. 2012, 4, 81. [Google Scholar]
- Tomaštík, J.; Chudá, J.; Tunák, D.; Chudý, F.; Kardoš, M. Advances in Smartphone Positioning in Forests: Dual-Frequency Receivers and Raw GNSS Data. For. Int. J. For. Res. 2021, 94, 292–310. [Google Scholar] [CrossRef]
LT700H | Stonex S900A | |
---|---|---|
Channels | 184 | 800 |
Constellations | GPS: L1C/A L2C, GLONASS: L1C/A, L2C/A Galileo: E1, E5B, BieDou: B1, B2 | GPS: L1C/A, L1C, L1P, L2C, L2P, L5G LONASS: L1C/A, L1P, L2C/A, L2P, L3 Galileo: E1, E5A, E5B, ALTBOC, E6 BieDou: B1, B2, B3. ACEBOC |
Horizontal RTK accuracy | 0.02 m | 0.005 m |
Dust and Water Proof | IP67 | IP67 or IP68 1 |
Battery | 8000 mAh | 3400 mAh |
LTE modem and Wi-Fi | YES | YES |
Weight | 675 g | 1300 g |
LT700H | Stonex S900A | |||
---|---|---|---|---|
FIX | FLOAT | FIX | FLOAT | |
Mean MACC | 1.32 | 1.41 | 0.16 | 0.84 |
StD MACC | 0.99 | 0.93 | 0.09 | 0.88 |
Mean MPRE | 1.28 | 1.29 | 0.69 | 0.95 |
StD MPRE | 0.66 | 0.61 | 0.68 | 0.63 |
Mean NVS | 30 | 30 | 16 | 12 |
Mean PDOP | 0.55 | 0.55 | 1.02 | 1.03 |
Receiver | Errors | PDOP | NVS | LAI | Openness |
---|---|---|---|---|---|
LT700H | MACC | 0.13 | −0.03 | −0.18 | −0.08 |
MPRE | 0.17 | −0.01 | −0.22 | −0.09 | |
Stonex S900A | MACC | 0.06 | −0.16 | −0.05 | −0.16 |
MPRE | 0.21 | −0.11 | −0.15 | −0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brach, M. Rapid Static Positioning Using a Four System GNSS Receivers in the Forest Environment. Forests 2022, 13, 45. https://doi.org/10.3390/f13010045
Brach M. Rapid Static Positioning Using a Four System GNSS Receivers in the Forest Environment. Forests. 2022; 13(1):45. https://doi.org/10.3390/f13010045
Chicago/Turabian StyleBrach, Michał. 2022. "Rapid Static Positioning Using a Four System GNSS Receivers in the Forest Environment" Forests 13, no. 1: 45. https://doi.org/10.3390/f13010045
APA StyleBrach, M. (2022). Rapid Static Positioning Using a Four System GNSS Receivers in the Forest Environment. Forests, 13(1), 45. https://doi.org/10.3390/f13010045