Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Field Data
2.4. UAV Data RGB Acquisition and DSM and DTM Data Processing
2.5. Integration of Template Matching and Object-Based Image Analysis for Stump Detection
2.6. Training Datasets
2.7. Image Classification Process
Machine Learning and Conventional-Based Classification
2.8. CHM, Logging Gaps and Canopy Cover Loss
3. Results
3.1. Integration of TM and OBIA Results on Stump Detection
3.1.1. Results of Both TM and OBIA
3.1.2. Accuracy Assessment on the Stump Detection
3.2. Density Mapping of the Stump Detections
3.3. Performance of Machine Learning and Conventional Classifications
3.3.1. Artificial Neural Network Classification (ANN)
3.3.2. Support Vector Machine (SVM) Classification
3.3.3. Conventional Classification Methods
3.3.4. Accuracy Assessment from SVM Classification
3.4. Forest Canopy Gaps
4. Discussion
4.1. Detection of the Tree Stumps Using Integration of TM and OBIA
4.2. Performance of the Classifications
4.3. Forest Canopy Gaps by Logging Area
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saiful, I.; Latiff, A. Effects of Selective Logging on Tree Species Composition, Richness and Diversity in a Hilldipterocarp Forest in Malaysia. J. Trop. For. Sci. 2014, 26, 188–202. [Google Scholar]
- Wan Mohd Jaafar, W.S.; Abdul Maulud, K.N.; Muhmad Kamarulzaman, A.M.; Raihan, A.; Md Sah, S.; Ahmad, A.; Saad, S.N.M.; Mohd Azmi, A.T.; Jusoh Syukri, N.K.A.; Razzaq Khan, W. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests 2020, 11, 670. [Google Scholar] [CrossRef]
- Hethcoat, M.G.; Edwards, D.P.; Carreiras, J.M.B.; Bryant, R.G.; França, F.M.; Quegan, S. A Machine Learning Approach to Map Tropical Selective Logging. Remote Sens. Environ. 2019, 221, 569–582. [Google Scholar] [CrossRef]
- Jaafar, W.S.W.M.; Said, N.F.S.; Maulud, K.N.A.; Uning, R.; Latif, M.T.; Kamarulzaman, A.M.M.; Mohan, M.; Pradhan, B.; Saad, S.N.M.; Broadbent, E.N.; et al. Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests 2020, 11, 1285. [Google Scholar] [CrossRef]
- Böttcher, H.; Eisbrenner, K.; Fritz, S.; Kindermann, G.; Kraxner, F.; McCallum, I.; Obersteiner, M. An Assessment of Monitoring Requirements and Costs of Reduced Emissions from Deforestation and Degradation. Carbon Balance Manag. 2009, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- D’Oliveira, M.V.N.; Figueiredo, E.O.; de Almeida, D.R.A.; Oliveira, L.C.; Silva, C.A.; Nelson, B.W.; da Cunha, R.M.; de Almeida Papa, D.; Stark, S.C.; Valbuena, R. Impacts of Selective Logging on Amazon Forest Canopy Structure and Biomass with a LiDAR and Photogrammetric Survey Sequence. For. Ecol. Manag. 2021, 500, 119648. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Beuchle, R.; Grecchi, R.C.; Achard, F. Assessment of Forest Degradation in Brazilian Amazon Due to Selective Logging and Fires Using Time Series of Fraction Images Derived from Landsat ETM+ Images. Remote Sens. Lett. 2014, 5, 773–782. [Google Scholar] [CrossRef]
- Achard, F.; Defries, R.; Eva, H.; Hansen, M.; Mayaux, P.; Stibig, H.J. Pan-Tropical Monitoring of Deforestation. Environ. Res. Lett. 2007, 2, 045022. [Google Scholar] [CrossRef] [Green Version]
- Ab Rahman, A.A.; Wan Mohd Jaafar, W.S.; Abdul Maulud, K.N.; Noor, N.M.; Mohan, M.; Cardil, A.; Silva, C.A.; Che’Ya, N.N.; Naba, N.I. Applications of Drones in Emerging Economies: A Case Study of Malaysia. In Proceedings of the IEEE 2019 6th International Conference on Space Science and Communication (IconSpace), Johor Bahru, Malaysia, 28–30 July 2019; pp. 35–40. [Google Scholar]
- Maizah Saad, S.N.; Abdul Maulud, K.N.; Mohd Jaafar, W.S.W.; Muhmad Kamarulzaman, A.M.; Omar, H. Tree Stump Height Estimation Using Canopy Height Model at Tropical Forest in Ulu Jelai Forest Reserve, Pahang, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012015. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Afrasinei, G.M.; Melis, M.T.; Buttau, C.; Bradd, J.M.; Arras, C.; Ghiglieri, G. Assessment of Remote Sensing-Based Classification Methods for Change Detection of Salt-Affected Areas (Biskra Area, Algeria). J. Appl. Remote Sens. 2017, 11, 016025. [Google Scholar] [CrossRef] [Green Version]
- Puliti, S.; Talbot, B.; Astrup, R. Tree-Stump Detection, Segmentation, Classification, and Measurement Using Unmanned Aerial Vehicle (UAV) Imagery. Forests 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, B.; Mansor, S.B.; Shafri, H.Z.M.; Halin, A.A. Integration of Template Matching and Object-Based Image Analysis for Semi-Automatic Oil Palm Tree Counting in UAV Images. In Proceedings of the 37th Asian Conference on Remote Sensing, ACRS 2016, Colombo, Sri Lanka, 17–21 October 2016; Volume 3, pp. 2333–2340. [Google Scholar]
- Bernales, A.M.J.; Samonte, C.O.; Antolihao, J.A.F.; Silapan, J.R.; Edullantes, B.; Pada, A.V.S.; Dela Serna, A.M.L. Integration of Template Matching and SVM Technique for Coconut Tree Detection. In Proceedings of the 37th Asian Conference on Remote Sensing, ACRS 2016, Colombo, Sri Lanka, 17–21 October 2016; Volume 1, pp. 104–112. [Google Scholar]
- Lewis, J.P. Template Matching by Cross Correlation 2 Normalized Cross Correlation. In Proceedings of the Vision Interface 95, Candian Image Processing and Pattern Recognition Society, Quebec City, QC, Canada, 15–19 May 1995; pp. 120–123. [Google Scholar]
- Dixon, B.; Candade, N. Multispectral Landuse Classification Using Neural Networks and Support Vector Machines: One or the Other, or Both? Int. J. Remote Sens. 2008, 29, 1185–1206. [Google Scholar] [CrossRef]
- Ustuner, M.; Sanli, F.B.; Dixon, B. Application of Support Vector Machines for Landuse Classification Using High-Resolution Rapideye Images: A Sensitivity Analysis. Eur. J. Remote Sens. 2015, 48, 403–422. [Google Scholar] [CrossRef]
- Nitze, I.; Schulthess, U.; Asche, H. Comparison of Machine Learning Algorithms Random Forest, Artificial Neuronal Network and Support Vector Machine to Maximum Likelihood for Supervised Crop Type Classification. In Proceedings of the 4th Conference on GEographic Object-Based Image Analysis—GEOBIA 2012, Rio de Janeiro, Brazil, 7–9 May 2012; Volume 79, p. 3540. [Google Scholar]
- Zielewska-Büttner, K.; Adler, P.; Ehmann, M.; Braunisch, V. Automated Detection of Forest Gaps in Spruce Dominated Stands Using Canopy Height Models Derived from Stereo Aerial Imagery. Remote Sens. 2016, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, Y.; Yu, Z. Image Classification Based on Region of Interest Detection. In Proceedings of the Pattern Recognition and Computer Vision 2015, Boston, MA, USA, 7–12 June 2015; Volume 9813, p. 98130U. [Google Scholar] [CrossRef]
- Kolios, S.; Stylios, C.D. Identification of Land Cover/Land Use Changes in the Greater Area of the Preveza Peninsula in Greece Using Landsat Satellite Data. Appl. Geogr. 2013, 40, 150–160. [Google Scholar] [CrossRef]
- Omer, G.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E. Performance of Support Vector Machines and Artificial Neural Network for Mapping Endangered Tree Species Using WorldView-2 Data in Dukuduku Forest, South Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4825–4840. [Google Scholar] [CrossRef]
- Seetha, M.; Muralikrishna, I.V.; Deekshatulu, B.L.; Malleswari, B.L.; Hegde, P. Artificial Neural Networks and Other Methods of Image Classification. Theor. Appl. Inf. Technol. 2008, 4, 1039–1053. [Google Scholar]
- Al-Ahmadi, F.S.; Hames, A.S. Comparison of Four Classification Methods to Extract Land Use and Land Cover from Raw Satellite Images for Some Remote Arid Areas, Kingdom of Saudi Arabia. J. King Abdulaziz Univ. Earth Sci. 2009, 20, 167–191. [Google Scholar] [CrossRef]
- Kalra, K.; Kumar Goswami, A.; Gupta, R. A Comparative Study of Supervised Image Classification Algorithms for Satellite Images. Int. J. Electr. 2013, 1, 10–16. [Google Scholar]
- Khan, U.; Minallah, N.; Junaid, A.; Gul, K.; Ahmad, N. Parallelepiped and Mahalanobis Distance Based Classification for Forestry Identification in Pakistan. In Proceedings of the 2015 International Conference on Emerging Technologies, ICET 2015, Peshawar, Pakistan, 19–20 December 2015; IEEE: Piscataway, NJ, USA, 21 January 2016. [Google Scholar] [CrossRef]
- See, L.; Laso Bayas, J.; Schepaschenko, D.; Perger, C.; Dresel, C.; Maus, V.; Salk, C.; Weichselbaum, J.; Lesiv, M.; McCallum, I.; et al. LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sens. 2017, 9, 754. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Mascaro, J. Mapping Tropical Forest Carbon: Calibrating Plot Estimates to a Simple LiDAR Metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Huo, L.; Lindberg, E. Individual Tree Detection Using Template Matching of Multiple Rasters Derived from Multispectral Airborne Laser Scanning Data. Int. J. Remote Sens. 2020, 41, 9525–9544. [Google Scholar] [CrossRef]
- Wijaya, A. Application of Multi-Stage Classification to Detect Illegal Logging with The Use of Multi-Source Data; International Institute for Geo-Information Sience and Earth Observation: Enschede, The Netherlands, 2005; p. 77. [Google Scholar]
- Ojaghi, S.; Ebadi, H.; Ahmadi, F.F. Using Artificial Neural Network for Classification of High Resolution Remotely Sensed Images and Assessment of Its Performance Compared with Statistical Methods. Am. J. Eng. Technol. Soc. 2015, 2, 1–8. [Google Scholar]
Acquisition Date | August 2019 |
---|---|
Sensors: | 1/2.3″ CMOS effective pixels = 12.4 M (total pixels = 12.76 M) |
Lens | FOV 94° 20 mm (35 mm format equivalent) f/2.8 focus at ∞ |
Max Flight Time | Approx. 23 min |
Satellite Positioning Systems | GPS/GLONASS |
Image Size | 4000 × 3000 pixels |
#1 | #2 | #3 | |
---|---|---|---|
Number of hidden layers | 7 | 7 | 7 |
Training rate | 0.2 | 0.2 | 0.2 |
Number of iterations | 500 | 700 | 1000 |
Penalty Parameter | Gamma in Kernel Function | |
---|---|---|
SVM | 100.00 | 0.25 |
Compartment (No) | Measured (n) | Detected (n) | Omitted (n) | Overall Accuracy (%) | Omission Error (%) | Commission Error (%) |
---|---|---|---|---|---|---|
159 | 7 | 5 | 2 | 71.43 | 28.57 | 40.00 |
124 | 8 | 5 | 3 | 62.50 | 37.50 | 60.00 |
160 | 6 | 4 | 2 | 66.67 | 40.00 | 50.00 |
Overall Accuracy | 66.87% |
Compartment (No) | Measured (n) | Detected (n) | Omitted (n) | Overall Accuracy (%) | Omission Error (%) | Commission Error (%) |
---|---|---|---|---|---|---|
159 | 7 | 6 | 1 | 85.71 | 14.29 | 16.67 |
124 | 8 | 6 | 2 | 75.00 | 25.00 | 33.33 |
160 | 6 | 4 | 2 | 66.67 | 33.33 | 50.00 |
Overall Accuracy | 75.79 |
Overall Accuracy | Kappa Coefficients | |
---|---|---|
Maximum Likelihood | 59.79% | 0.47 |
Minimum Distance | 47.30% | 0.30 |
Fuzzy C Means —Mahalanobis Distance | 55.94% | 0.40 |
Neural Network —500 iterations, 7 hidden nodes | 79.83% | 0.65 |
Neural Network —700 iterations, 7 hidden nodes | 79.40% | 0.63 |
Neural Network —1000 iterations, 7 hidden nodes | 70.81% | 0.59 |
Support Vector Machine | 85.10% | 0.74 |
Class | UA | PA | CE | OE |
---|---|---|---|---|
Stump | 65.71 | 70.05 | 29.95 | 34.29 |
Road | 85.11 | 96.30 | 14.89 | 3.70 |
Skid Trail | 75.70 | 44.56 | 24.30 | 55.44 |
Fell Log | 56.10 | 86.89 | 43.90 | 13.11 |
Forest | 99.62 | 99.73 | 0.38 | 0.27 |
Car | 65.75 | 8.04 | 34.25 | 91.96 |
Overall Accuracy | 87.40% | |||
Kappa Coefficient | 0.77 |
Methods | Roads (Ha) | Skid Trails (Ha) | Forest Gaps and Felled Log (Ha) | Overall Total Areas (Ha) |
---|---|---|---|---|
Digitization | ||||
Compartment 124 | 0.47 | 0.35 | 1.98 | 10.27 |
Compartment 159 | 1.12 | 0.34 | 2.30 | |
Compartment 160 | 0.92 | 0.99 | 1.80 | |
Total Areas (Ha) | 2.51 | 1.68 | 6.08 | |
Automatic Detection | ||||
Compartment 124 | 0.42 | 0.31 | 2.18 | 12.97 |
Compartment 159 | 1.08 | 0.30 | 4.53 | |
Compartment 160 | 0.85 | 0.94 | 2.22 | |
Total Areas (Ha) | 2.35 | 1.55 | 8.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamarulzaman, A.M.M.; Wan Mohd Jaafar, W.S.; Abdul Maulud, K.N.; Saad, S.N.M.; Omar, H.; Mohan, M. Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery. Forests 2022, 13, 48. https://doi.org/10.3390/f13010048
Kamarulzaman AMM, Wan Mohd Jaafar WS, Abdul Maulud KN, Saad SNM, Omar H, Mohan M. Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery. Forests. 2022; 13(1):48. https://doi.org/10.3390/f13010048
Chicago/Turabian StyleKamarulzaman, Aisyah Marliza Muhmad, Wan Shafrina Wan Mohd Jaafar, Khairul Nizam Abdul Maulud, Siti Nor Maizah Saad, Hamdan Omar, and Midhun Mohan. 2022. "Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery" Forests 13, no. 1: 48. https://doi.org/10.3390/f13010048
APA StyleKamarulzaman, A. M. M., Wan Mohd Jaafar, W. S., Abdul Maulud, K. N., Saad, S. N. M., Omar, H., & Mohan, M. (2022). Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery. Forests, 13(1), 48. https://doi.org/10.3390/f13010048