Regeneration Status and Role of Traditional Ecological Knowledge for Cloud Forest Ecosystem Restoration in Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Regeneration Survey
2.3. Survey of Traditional Ecological Knowledge
2.4. Data Analyses
3. Results
3.1. Regeneration Status
3.2. Traditional Knowledge of Species Uses
3.3. Species Recommended for Future Planting
4. Discussion
5. Conclusions
- (1)
- Regeneration in old growth forest gaps, which had experienced previous anthropogenic disturbances, is limited by the rampant colonization of gaps by bamboo species and micro-habitat conditions created by topographic and soil conditions;
- (2)
- TEK can contribute to ecological restoration through species selection for restoration planting;
- (3)
- There is synergy between TEK and ecological science-based approaches (e.g., regeneration surveys). Thus, natural ecosystem studies and traditional ecological knowledge can provide relevant information about ecosystem–plant–animal interactions, and identify native tree species useful for both humans and wildlife. This information, in turn, can serve as an important entry point in the design, application and monitoring of site-specific restoration interventions, with the establishment of future ecological corridors oriented to connecting isolated primary and secondary forest remnants.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Family | Scientific Name | Tree | Treelet | Grand Total |
Actinidiaceae | Actinidiaceae sp.1 | 49 | 49 | |
Actinidiaceae | Saurauia prainiana Buscal. | 83 | 83 | |
Actinidiaceae | Saurauia sp.1 | 1 | 1 | |
Actinidiaceae | Sauraurea ademodonta Sleumer | 4 | 4 | |
Actinidiaceae | Saurauia aff. tomentosa (Kunth) Spreng. | 18 | 18 | |
Actinidiaceae | Saurauia sp. | 3 | 3 | |
Annonaceae | Xylopia sp. | 2 | 2 | |
Annonaceae | Aquifoliaceae | 1 | 1 | |
Annonaceae | Ilex laurina Kunth | 1 | 1 | |
Araliaceae | Araliaceae sp.1 | 5 | 5 | |
Araliaceae | Oreopanax palamophyllus Harms | 27 | 27 | |
Araliaceae | Schefflera dielsii Harms | 45 | 45 | |
Araliaceae | Schefflera sp.2 | 7 | 7 | |
Arecaceae | Arecaceae sp. | 1 | 1 | |
Arecaceae | Arecaceae sp.1 | 10 | 10 | |
Arecaceae | Arecaceae sp.2 | 1 | 1 | |
Arecaceae | Ceroxylon echinulatum Galeano | 7 | 7 | |
Arecaceae | Chamaedorea pinnatifrons | 6 | 6 | |
Arecaceae | Geonoma orbignyana Mart. | 109 | 109 | |
Arecaceae | Geonoma sp. | 3 | 3 | |
Arecaceae | Prestoea acuminata (Willd.) H.E. Moore | 3 | 3 | |
Asteraceae | Astracea sp.1 | 1 | 1 | |
Asteraceae | Critoniopsis elbertiana (Cuatrec.) H. Rob. | 2 | 2 | |
Asteraceae | Critoniopsis occidentalis (Cuatrec.) H. Rob. | 20 | 20 | |
Boraginaceae | Cordia colombiana Killip | 3 | 3 | |
Boraginaceae | Cordia ucayaliensis (I.M. Johnst.) I.M. | 3 | 3 | |
Brunelliaceae | Brunellia tomentosa Bonpl. | 1 | 1 | |
Caprifoliaceae | Viburnum sp. | 4 | 4 | |
Caricaceae | Carica sp. | 1 | 1 | |
Caricaceae | Celastraceae | 3 | 3 | |
Chloranthaceae | Hedyosmum luteynii Todzia | 3 | 3 | |
Chloranthaceae | Hedyosmum sp. | 2 | 2 | |
Clusiaceae | Chrysochlamys membranacea Planch. & Triana | 5 | 5 | |
Clusiaceae | Clusia lineata (Benth.) Planch. & Triana | 10 | 10 | |
Clusiaceae | Clusia loranthacea Planch. & Triana | 1 | 1 | |
Cunoniaceae | Weinmannia macrophylla Kunth | 2 | 2 | |
Cunoniaceae | Weinmannia pinnata L. | 5 | 5 | |
Cyatheaceae | Cyathea caracasana (Klotzsch) Domin | 39 | 39 | |
Euphorbiaceae | Alchornea grandiflora Müll. Arg. | 7 | 7 | |
Euphorbiaceae | Alchornea latifolia Sw. | 39 | 39 | |
Euphorbiaceae | Croton sp. | 4 | 4 | |
Euphorbiaceae | Euphorbiaceae sp. | 1 | 1 | |
Euphorbiaceae | Sapium contortum Huber | 3 | 3 | |
Euphorbiaceae | Sapium marmieri Huber | 2 | 2 | |
Euphorbiaceae | Tetrorchidium macrophyllum Müll. Arg. | 5 | 5 | |
Fabaceae | Dussia tessmannii Harms | 3 | 3 | |
Fabaceae | Erythrina edulis Triana ex.Michli | 208 | 208 | |
Fabaceae | Inga sp. | 2 | 2 | |
Fabaceae | Inga aff. acuminata Benth | 9 | 9 | |
Fabaceae | Senna obliqua G. Don | 1 | 1 | |
Hypericaceae | Vismia lateriflora Pers. | 8 | 8 | |
Icacinaceae | Citronella incarum (J.F. Macbr.) R.A. Howard | 2 | 2 | |
Indet. | Ind. sp.1 | 1 | 1 | |
Indet. | Ind. sp.1.1 | 1 | 1 | |
Indet. | Ind. sp.1.3 | 2 | 2 | |
Indet. | Ind. sp.1.8 | 1 | 1 | |
Indet. | Ind. sp.2.1 | 1 | 1 | |
Indet. | Ind. sp.2 | 1 | 1 | |
Indet. | Ind. sp.2.1 | 14 | 14 | |
Indet. | Ind. sp.2.4 | 8 | 8 | |
Indet. | Ind. sp.2.5 | 9 | 9 | |
Indet. | Ind. sp.2.6 | 2 | 2 | |
Indet. | Ind. sp.5 | 1 | 1 | |
Indet. | Ind. sp.8 | 1 | 1 | |
Indet. | Ind. sp.2.7 | 2 | 2 | |
Lauraceae | Aniba riparia (Nees) Mez | 7 | 7 | |
Lauraceae | Licaria sp. | 2 | 2 | |
Lauraceae | Nectandra acutifolia (Ruiz & Pav.) Mez | 7 | 7 | |
Lauraceae | Nectandra membranacea (Sw.) Griseb. | 15 | 15 | |
Lauraceae | Nectandra sp. | 4 | 4 | |
Lauraceae | Ocotea aff. cernua (Meisn.) Mez | 3 | 3 | |
Lauraceae | Ocotea insularis (Meisn.) Mez | 7 | 7 | |
Lauraceae | Ocotea javitensis (Kunth) Pittier | 4 | 4 | |
Lauraceae | Ocotea oblonga (Meisn.) Mez | 5 | 5 | |
Lauraceae | Ocotea sp. | 55 | 55 | |
Lauraceae | Ocotea sp.1 | 20 | 20 | |
Lauraceae | Ocotea stuebelii | 9 | 9 | |
Lauraceae | Persea areolatocostae (C.K. Allen) Vander Werff | 9 | 9 | |
Lauraceae | Persea subcordata (Ruiz & Pav.) Nees | 10 | 10 | |
Lauraceae | Pleurothyrium sp. | 1 | 1 | |
Lauraceae | Pleurothyrium trianae (Mez) Rohwer | 10 | 10 | |
Lecythidaceae | Gustavia hexapetala (Aubl.) Sm. | 2 | 2 | |
Malpighiaceae | Bunchosia argentea (Jacq.) DC. | 8 | 8 | |
Melastomataceae | Axinaea sodiroi Wurdack | 8 | 8 | |
Melastomataceae | Axinaea sp. | 1 | 1 | |
Melastomataceae | Conostegia aff. centronioides Markgr. | 51 | 51 | |
Melastomataceae | Melastomat. sp. | 69 | 69 | |
Melastomataceae | Melastomat. sp.1 | 11 | 11 | |
Melastomataceae | Melastomat. sp.2 | 1 | 1 | |
Melastomataceae | Melastomat. sp.3 | 23 | 23 | |
Melastomataceae | Melastomat. sp.4 | 1 | 1 | |
Melastomataceae | Melastomat. sp.5 | 8 | 8 | |
Melastomataceae | Meriania drakei (Cogn.) Wurdack | 20 | 20 | |
Melastomataceae | Meriania hexamera Sprague. | 2 | 2 | |
Melastomataceae | Meriania sp. | 45 | 45 | |
Melastomataceae | Meriania tomentosa (Cogn.) Wurdack | 1 | 1 | |
Melastomataceae | Miconia aequatorialis Wurdack | 3 | 3 | |
Melastomataceae | Miconia aggregata Gleason | 9 | 9 | |
Melastomataceae | Miconia barbeyana Cogn. | 3 | 3 | |
Melastomataceae | Miconia brevitheca Gleason | 7 | 7 | |
Melastomataceae | Miconia clathrantha Triana ex Cogn. | 27 | 27 | |
Melastomataceae | Miconia floribunda (Bonpl.) DC. | 25 | 25 | |
Melastomataceae | Miconia glandulistyla (Bonpl.) DC. | 48 | 48 | |
Melastomataceae | Miconia napoana Wurdack | 4 | 4 | |
Melastomataceae | Miconia nutans Donn. Sm. | 17 | 17 | |
Melastomataceae | Miconia rivalis Wurdack | 1 | 1 | |
Melastomataceae | Miconia sp. | 34 | 34 | |
Melastomataceae | Miconia sp.1 | 28 | 28 | |
Melastomataceae | Miconia sp.2 | 20 | 20 | |
Melastomataceae | Miconia theaezans (Bonpl.) Cogn. | 11 | 11 | |
Melastomataceae | Ossaea micrantha (Sw.) Macfad. ex Cong. | 48 | 48 | |
Melastomataceae | Tibouchina mollis (Bonpl.) Cogn. | 7 | 7 | |
Meliaceae | Meliaceae sp. | 3 | 3 | |
Meliaceae | Ruagea glabra Triana & Planch. | 14 | 14 | |
Meliaceae | Trichilia septentrionalis C. DC. | 25 | 25 | |
Meliaceae | Trichilia sp.1 | 11 | 11 | |
Monimiaceae | Molinedia sp. | 1 | 1 | |
Monimiaceae | Mollinedia ovata Ruiz & Pav. | 13 | 13 | |
Moraceae | Ficus castellviana Dugand | 1 | 1 | |
Moraceae | Ficus cuatrecasana Dugand | 1 | 1 | |
Moraceae | Ficus maxima Mill. | 5 | 5 | |
Moraceae | Ficus sp. | 9 | 9 | |
Moraceae | Ficus tonduzii Standl. | 2 | 2 | |
Moraceae | Morus insignis Bureau | 14 | 14 | |
Myricaceae | Myrica sp. | 1 | 1 | |
Myrsinaceae | Cybianthus pastensis (Mez) G. Agostini | 3 | 3 | |
Myrsinaceae | Geissanthus aff. Pichinchae Mez | 6 | 6 | |
Myrsinaceae | Myrcia sp. | 12 | 12 | |
Myrsinaceae | Myrsine coriacea (Sw.) R. Br. ex Roem. & Schult. | 1 | 1 | |
Myrtaceae | Eugenia crassimarginata M.L. Kawas. & B. Holst | 5 | 5 | |
Myrtaceae | Myrcia cf. obumbrans (O. Berg) McVaugh | 31 | 31 | |
Myrtaceae | Myrtaceae sp. | 6 | 6 | |
Phyllanthaceae | Hieronyma asperifolia Pax & K. Hoffm. | 1 | 1 | |
Phyllanthaceae | Hieronyma cf. Macrocarpa Müll. Arg. | 68 | 68 | |
Phyllanthaceae | Hieronyma oblonga (Tul.) Müll. Arg. | 1 | 1 | |
Phyllanthaceae | Hieronyma sp.1 | 20 | 20 | |
Phyllanthaceae | Phyllanthus sponiifolius Müll. Arg. | 19 | 19 | |
Piperaceae | Piper aff. arboreum Aubl. | 4 | 4 | |
Piperaceae | Piper bullosum C. DC. | 87 | 87 | |
Piperaceae | Piper crassinervium Kunth. | 6 | 6 | |
Piperaceae | Piper kelleyi Tepe | 268 | 268 | |
Piperaceae | Piper obliqua Ruiz & Pav. | 1 | 1 | |
Piperaceae | Piper perareolatum C. DC. | 9 | 9 | |
Piperaceae | Piper pittieri C. DC. | 21 | 21 | |
Piperaceae | Piper sp. | 40 | 40 | |
Piperaceae | Piper sp.1 | 5 | 5 | |
Piperaceae | Piper sp.3 | 1 | 1 | |
Piperaceae | Piper sp.2 | 1 | 1 | |
Rosaceae | Prunus herthae Diels | 4 | 4 | |
Rosaceae | Prunus muris Cuatrec. | 1 | 1 | |
Rubiaceae | Chinchona aff. pubensis Vahl. | 13 | 13 | |
Rubiaceae | Duroia sp. | 2 | 2 | |
Rubiaceae | Faramea glandulosa Poepp. | 97 | 97 | |
Rubiaceae | Gonzalagunia sp. | 3 | 3 | |
Rubiaceae | Notopleura macrophylla (Ruiz & Pav.) C.M. | 7 | 7 | |
Rubiaceae | Palicourea amethystina (Ruiz & Pav.) DC. | 8 | 8 | |
Rubiaceae | Palicourea demissa Standl. | 26 | 26 | |
Rubiaceae | Palicourea prodiga Standl. ex C.M. Taylor | 12 | 12 | |
Rubiaceae | Picramnia magnifolia J.F. Macbr. | 1 | 1 | |
Rubiaceae | Rubiaceae sp.1 | 34 | 34 | |
Rubiaceae | Rubiaceae sp.2 | 5 | 5 | |
Rubiaceae | Rubiaceae sp.3 | 1 | 1 | |
Rubiaceae | Rubiaceae sp.4 | 9 | 9 | |
Rubiaceae | Rubiaceae sp.5 | 20 | 20 | |
Rubiaceae | Rubiaceae sp.6 | 4 | 4 | |
Rubiaceae | Rubiaceae sp.7 | 2 | 2 | |
Rubiaceae | Rubiaceae sp.8 | 4 | 4 | |
Sabiaceae | Meliosma sp. | 3 | 3 | |
Salicaceae | Casearia aff. nigricans Sleumer | 10 | 10 | |
Salicaceae | Casearia mariquitensis (Kunth). | 2 | 2 | |
Salicaceae | Casearia quinduensis Tul. | 6 | 6 | |
Salicaceae | Casearia sylvestris S.W | 2 | 2 | |
Salicaceae | Salicaceae sp. | 5 | 5 | |
Sapindaceae | Allophyllus sp. | 4 | 4 | |
Simaroubaceae | Picramnia magnifolia J.F. Macbr. | 3 | 3 | |
Siparunaceae | Siparuna lepidota (Kunth) A. DC. | 17 | 17 | |
Siparunaceae | Siparuna macrotepala Perkins | 3 | 3 | |
Siparunaceae | Siparuna pyricarpa (Ruiz & Pav.) Perkins | 5 | 5 | |
Solanaceae | Cestrum aff. schlechtendahlii | 79 | 79 | |
Solanaceae | Cestrum megalophyllum | 1 | 1 | |
Solanaceae | Cestrum peruvianum Roem. | 7 | 7 | |
Solanaceae | Cestrum racemosum Ruiz & Pav. | 1 | 1 | |
Solanaceae | Cestrum sp. | 3 | 3 | |
Solanaceae | Iochroma calycinum Benth. | 8 | 8 | |
Solanaceae | Iochroma sp.1 | 8 | 8 | |
Solanaceae | Sessea sp. | 1 | 1 | |
Solanaceae | solanaceae sp.2 | 27 | 27 | |
Solanaceae | Solanaceae sp.3 | 22 | 22 | |
Solanaceae | Solanaceae sp.4 | 6 | 6 | |
Solanaceae | Solanaceae sp5 | 2 | 2 | |
Solanaceae | Solanaceae sp6 | 4 | 4 | |
Solanaceae | Solanum abitaguense S. Knapp | 6 | 6 | |
Solanaceae | Solanum anisophyllum Van Heurck & Müll. | 13 | 13 | |
Solanaceae | Solanum cf. hypermegethes Werderm. | 3 | 3 | |
Solanaceae | Solanum dolosum C.V. Morton ex S. Knapp | 44 | 44 | |
Solanaceae | Solanum ovalifolium Dunal | 9 | 9 | |
Solanaceae | Solanum sp1. | 24 | 24 | |
Staphyleaceae | Turpinia occidentalis (Sw.) G. Don | 43 | 43 | |
Symplocaceae | Symplocos fuliginosa B. Ståhl | 1 | 1 | |
Urticaceae | Cecropia ficifolia Warb. ex Snethl. | 5 | 5 | |
Urticaceae | Cecropia angustifolia Trécul | 67 | 67 | |
Urticaceae | Cecropia sp. | 9 | 9 | |
Urticaceae | Urera baccifera (L.) Gaudich. ex Wedd. | 2 | 2 | |
Verbenaceae | Citharexylum montanum Moldenke | 22 | 22 | |
Verbenaceae | Citharexylum sp. | 9 | 9 |
References
- Morales-Hidalgo, D.; Oswalt, S.N.; Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, F.O.; Rodríguez, J.; Yepez-Noboa, A. Forest Transformation in the Wake of Colonization: The Quijos Andean Amazonian Flank, Past and Present. Forests 2022, 13, 11. [Google Scholar] [CrossRef]
- INEC. Información Poblacional Ecuador; Instituto Nacional de Estadísticas y Censos: Quito, Ecuador, 2015. [Google Scholar]
- Mecham, J. Causes and consequences of deforestation in Ecuador. In Forest Research Quito; Ecuador Centro de Investigacion de los Bosques Tropicales: Quito, Ecuador, 2001. [Google Scholar]
- Sarmiento, F.O. Anthropogenic change in the landscapes of highland Ecuador. Geogr. Rev. 2002, 92, 213–234. [Google Scholar] [CrossRef]
- Farley, K.A. Grasslands to Tree Plantations: Forest Transition in the Andes of Ecuador. Ann. Assoc. Am. Geogr. 2007, 97, 755–771. [Google Scholar] [CrossRef]
- Sierra, R.; Campos, F.; Chamberlin, J. Assessing biodiversity conservation priorities: Ecosystem risk and representativeness in continental Ecuador. Landsc. Urban Plan. 2002, 59, 95–110. [Google Scholar] [CrossRef]
- Southgate, D.; Sierra, R.; Brown, L. The causes of tropical deforestation in Ecuador: A statistical analysis. World Dev. 1991, 19, 1145–1151. [Google Scholar] [CrossRef]
- Larrea, C. Hacia una Historia Ecológica del Ecuador: Propuestas Para el Debate; Corporación Editora Nacional: Quito, Ecuador, 2006. [Google Scholar]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing Drivers of Deforestation and New Opportunities for Conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, C.C.; Eckert, G.E.; Coleman, D.C. Effect of pasture trees on soil nitrogen and organic matter: Implications for tropical montane forest restoration. Restor. Ecol. 1998, 6, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Myster, R.W.; Sarmiento, F.O. Seed inputs to microsite patch recovery on two tropandean landslides in Ecuador. Restor. Ecol. 1998, 6, 35–43. [Google Scholar] [CrossRef]
- Günter, S.; Weber, M.; Erreis, R.; Aguirre, N. Influence of distance to forest edges on natural regeneration of abandoned pastures: A case study in the tropical mountain rain forest of Southern Ecuador. Eur. J. For. Res. 2007, 126, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, N.; Palomeque, X.; Weber, M.; Stimm, B.; Günter, S. Reforestation and natural succession as tools for restoration on abandoned pastures in the Andes of South Ecuador. In Silviculture in the Tropics; Günter, S., Weber, M., Stimm, B., Mosandl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 513–524. [Google Scholar]
- Wilson, S.J.; Rhemtulla, J.M. Acceleration and novelty: Community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecol. Appl. 2016, 26, 203–218. [Google Scholar] [CrossRef] [PubMed]
- FUNAN. Plan de Manejo Reserva Antisana Quito; Fundación-Antisana: Quito, Ecuador, 2002. [Google Scholar]
- GADPC. Pan de Desarrollo y Ordenamiento Territorial de la Parroquia de Cosanga; Ministerio Del Ambiente Del: Napo, Ecuador, 2012. [Google Scholar]
- Gómez De La Torre, S.M. Dinámicas Socio-Ambientales del Manejo de los Bosques: Caso de la Parroquia de Cosanga, Provincia del Napo; Facultad Latinoamericana de Ciencias Sociales sede Ecuador: Quito, Ecuador, 2011. [Google Scholar]
- Mariscal Chávez, A. Effect of Forestry Plantations over Wood Regeneration Quality in La Selva Biological Station. MSc Thesis, Tropical Agricultural Research and Higher Education Center (CATIE), Turrialba, Costa Rica, 1998; 60p. [Google Scholar]
- Stanley, W.G.; Montagnini, F. Biomass and nutrient accumulation in pure and mixed plantations of indigenous tree species grown on poor soils in the humid tropics of Costa Rica. For. Ecol. Manag. 1999, 113, 91–103. [Google Scholar] [CrossRef]
- Carnevale, N.J.; Montagnini, F. Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. For. Ecol. Manag. 2002, 163, 217–227. [Google Scholar] [CrossRef]
- Piotto, D.; Vıquez, E.; Montagnini, F.; Kanninen, M. Pure and mixed forest plantations with native species of the dry tropics of Costa Rica: A comparison of growth and productivity. For. Ecol. Manag. 2004, 190, 359–372. [Google Scholar] [CrossRef]
- Mariscal, A.; Guariguata, M.; Finegan, B.; Montagnini, F.; Delgado, D. Lluvia de semillas en plantaciones forestales en la Estación Biológica La Selva, Costa Rica. In La Botánica en el Nuevo Milenio: Resúmenes del Tercer Congreso Ecuatoriano de Botánica; FUNBOTANICA: Quito Ecuador, 2000; 59p. [Google Scholar]
- Mueller, J.G.; Assanou, I.H.B.; Dan Guimbo, I.R.O.; Almedom, A.M. Evaluating Rapid Participatory Rural Appraisal as an Assessment of Ethnoecological Knowledge and Local Biodiversity Patterns. Conserv. Biol. 2010, 24, 140–150. [Google Scholar] [CrossRef]
- Nabhan, G.P. Ethnoecology: Bridging disciplines, cultures and species. J. Ethnobiol. 2009, 29, 3–7. [Google Scholar] [CrossRef]
- Ouma, O.K.; Stadel, C.; Okalo, B. Social science and indigenous ecological knowledge in Kakamega Forest, Western Kenya. Eco. Mont-J. Prot. Mt. Areas Res. 2016, 8, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.; Ghimire, K. Synergy between traditional ecological knowledge and conservation science supports forest preservation in Ecuador. Conserv. Ecol. 2003, 8, 1. Available online: http://www.consecol.org/vol8/iss1/art1/ (accessed on 1 November 2021).
- Gadgil, M.; Olsson, P.; Berkes, F.; Folke, C. Exploring the role of local ecological knowledge in ecosystem management: Three case studies. In Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Berkes, F., Colding, J., Folke, C., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 189–209. [Google Scholar]
- Gadgil, M.; Berkes, F.; Folke, C. Indigenous knowledge for biodiversity conservation. Ambio 1993, 22, 151–156. [Google Scholar]
- Warren, D.M.; Rajasekaran, B. Putting local knowledge to good use. Int. Agric. Dev. 1993, 13, 8–10. [Google Scholar]
- Berkes, F.; Colding, J.; Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 2000, 10, 1251–1262. [Google Scholar] [CrossRef]
- Lykke, A.; Kristensen, M.; Ganaba, S. Valuation of local use and dynamics of 56 woody species in the Sahel. Biodivers. Conserv. 2004, 13, 1961–1990. [Google Scholar] [CrossRef]
- Uprety, Y.; Asselin, H.; Bergeron, Y.; Doyon, F.; Boucher, J.-F. Contribution of traditional knowledge to ecological restoration: Practices and applications. Ecoscience 2012, 19, 225–237. [Google Scholar] [CrossRef]
- Charnley, S.; Fischer, A.P.; Jones, E.T. Integrating traditional and local ecological knowledge into forest biodiversity conservation in the Pacific Northwest. For. Ecol. Manag. 2007, 246, 14–28. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, C.G.; Gustavo, D.F.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853. [Google Scholar] [CrossRef]
- Simbaña, J.; Salagage, L.; Aldaz, R.; Torricelli, Y. Conteo Navideño de Aves en el Corredor del Valle del Quijos: Cosanga Narupa (Yanayacu). Huellas Sumaco 2012, 8, 39–42. [Google Scholar]
- R-Core-Team. R: A Language and Environment for Statistical Computing; Computing, R.F.F.S., Ed.; European Environment Agency: Vienna, Austria, 2012. [Google Scholar]
- Tardío, J.; Pardo De Santayana, M. Cultural importance indices: A comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain) 1. Econ. Bot. 2008, 62, 24–39. [Google Scholar] [CrossRef]
- Pardo De Santayana, M. Las Plantas en la Cultura Tradicional de la Antigua Merindad de Campoo. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2003. [Google Scholar]
- Reyes-García, V.; Marti, N.; Mcdade, T.; Tanner, S.; Vadez, V. Concepts and methods in studies measuring individual ethnobotanical knowledge. J. Ethnobiol. 2007, 27, 182–203. [Google Scholar] [CrossRef] [Green Version]
- Bliss, J.; Aplet, G.; Hartzell, C.; Harwood, P.; Jahnige, P.; Kittredge, D.; Lewandowski, S.; Soscia, M.L. Community-Based Ecosystem Monitoring. J. Sustain. For. 2001, 12, 143–167. [Google Scholar] [CrossRef]
- Peck, M.; Thorn, J.; Mariscal, A.; Baird, A.; Tirira, D.; Kniveton, D. Focusing Conservation Efforts for the Critically Endangered Brown-headed Spider Monkey (Ateles fusciceps) Using Remote Sensing, Modeling, and Playback Survey Methods. Int. J. Primatol. 2011, 32, 134–148. [Google Scholar] [CrossRef]
- Dodson, C.H.; Gentry, A.H. Biological Extinction in Western Ecuador. Ann. Mo. Bot. Gard. 1991, 78, 273–295. [Google Scholar] [CrossRef]
- Young, K.; Ulloa, C.; Luteyn, J.; Knapp, S. Plant evolution and endemism in Andean South America: An introduction. Bot. Rev. 2002, 68, 4–21. [Google Scholar] [CrossRef]
- Justicia, R. Ecuador’s Choco Andean Corridor: A Landscape Aproach for Conservation and Sutainable Development. Ph.D. Dissertation, University of Georgia, Athens, GA, USA, 2007. [Google Scholar]
- Bubb, P.; May, I.; Miles, L.; Sayer, J. Cloud Forest Agenda; UNEP-WCMC: Cambridge, UK, 2004. [Google Scholar]
- Arriaga, L. Gap-building-phase regeneration in a tropical montane cloud forest of north-eastern Mexico. J. Trop. Ecol. 2000, 16, 535–562. [Google Scholar] [CrossRef]
- Calles, J.; Bustillos, M.; Medina, B.; Tobar, C. Evaluación Ecológica Rápida de las Microcuencas del Programa de Servicios Ambientales del Cantón El Chaco, Provincia de Napo; EcoCiencia: Quito, Ecuador, 2009. [Google Scholar]
- Sovu Tigabu, M.; Savadogo, P.; Oden, P.C.; Xayvongsa, L. Recovery of secondary forests on swidden cultivation fallows in Laos. For. Ecol. Manag. 2009, 258, 2666–2675. [Google Scholar] [CrossRef]
- Arunachalam, A.; Arunachalam, K. Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India. Plant Soil 2000, 223, 185–193. [Google Scholar] [CrossRef]
- Kiyono, Y.; Ochiai, Y.; Chiba, Y.; Asai, H.; Saito, K.; Shiraiwa, T.; Horie, T.; Songnoukhai, V.; Navongxai, V.; Inoue, Y. Predicting chronosequential changes in carbon stocks of pachymorph bamboo communities in slash-and-burn agricultural fallow, northern Lao People’s Democratic Republic. J. For. Res. 2007, 12, 371–383. [Google Scholar] [CrossRef]
- Tepe, E.J.; Rodríguez-Castañeda, G.; Glassmire, A.E.; Dyer, L.A. Piper kelleyi, a hotspot of ecological interactions and a new species from Ecuador and Peru. Phyto Keys 2014, 34, 19. [Google Scholar] [CrossRef] [PubMed]
- Homeier, J.; Breckle, S.W.; Gunter, S.; Rollenbeck, R.T.; Leuschner, C. Tree Diversity, Forest Structure and Productivity along Altitudinal and Topographical Gradients in a Species-Rich Ecuadorian Montane Rain Forest. Biotropica 2010, 42, 140–148. [Google Scholar] [CrossRef]
- Unger, M.; Homeier, J.; Leuschner, C. Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Trop. Ecol. 2013, 54, 33–45. [Google Scholar]
- González-Rivas, B.; Tigabu, M.; Castro Marín, G.; Odén, P.C. Population dynamics and spatial distribution of seedlings and saplings of four dry forest species in Nicaragua. Bois. Des. Trop. 2009, 302, 21–31. [Google Scholar]
- Castro Marín, G.; Tigabu, M.; González-Rivas, B.; Odén, P.C. Natural regeneration dynamics of three dry deciduous forest species in Chacocente Wildlife Reserve, Nicaragua. J. For. Res. 2009, 20, 1–6. [Google Scholar] [CrossRef]
- Trappe, J. The Soils of Cosanga (English Version Summary); Technische Universität Dresden: Dresden, Germany, 2014. [Google Scholar]
- Madsen, J.E.; Øllgaard, B. Floristic composition, structure, and dynamics of an upper montane rain forest in Southern Ecuador. Nord. J. Bot. 1994, 14, 403–423. [Google Scholar] [CrossRef]
- Valencia, R.; Foster, R.B.; Villa, G.; Condit, R.; Svenning, J.C.; Hernández, C.; Romoleroux, K.; Losos, E.; Magård, E.; Balslev, H. Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. J. Ecol. 2004, 92, 214–229. [Google Scholar] [CrossRef]
- Peck, M.; Mariscal, A.; Padbury, M.; Cane, T.; Kniveton, D.; Chinchero, M.A. Identifying tropical Ecuadorian Andean trees from inter-crown pixel distributions in hyperspatial aerial imagery. Appl. Veg. Sci. 2012, 15, 548–559. [Google Scholar] [CrossRef]
- Holl, K.D. Do bird perching structures elevate seed rain and seedling establishment in abandoned tropical pasture? Restor. Ecol. 1998, 6, 253–261. [Google Scholar] [CrossRef]
- Shiels, A.B.; Walker, L.R. Bird perches increase forest seeds on Puerto Rican landslides. Restor. Ecol. 2003, 11, 457–465. [Google Scholar] [CrossRef]
- Egan, D.; Howell, E.A. The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems; Island Press: Washington, DC, USA, 2001. [Google Scholar]
Variable | Source of Variation | d.f. * | F-Value | p-Value |
---|---|---|---|---|
SR | No. of indicator sp. | 1 | 337.96 | <0.001 |
Forest remnant (FR) | 3 | 3.97 | 0.010 | |
Growth habit (GH) | 1 | 48.73 | <0.001 | |
FR × GH | 3 | 3.59 | 0.016 | |
Error | 119 | |||
AB | No. of indicator sp. | 1 | 88.16 | <0.001 |
Forest remnant (FR) | 3 | 4.22 | 0.007 | |
Growth habit (GH) | 1 | 21.32 | <0.001 | |
FR × GH | 3 | 0.09 | 0.964 | |
Error | 119 | |||
NIS | Forest remnant (FR) | 3 | 7.19 | <0.001 |
Error | 124 |
Growth | Forest Remnant | ||||
---|---|---|---|---|---|
Variables | Habit | SI | VA | VS | YA |
Species richness | Tree | 8 ± 1 | 13 ± 1 | 11 ± 1 | 8 ± 1 |
Treelet | 11 ± 1 | 15 ± 1 | 10 ± 1 | 11 ± 1 | |
Abundance | Tree | 13 ± 2 | 31 ± 4 | 20 ± 3 | 17 ± 2 |
Treelet | 23 ± 3 | 36 ± 2 | 25 ± 4 | 20 ± 2 | |
No. of indicator species | 22 ± 1 | 15 ± 1 | 19 ± 1 | 21 ± 1 |
Categories | Number of UR | Percentage |
---|---|---|
Poles for fencing | 625 | 27 |
Timber and furniture | 593 | 26 |
Food for wildlife | 415 | 18 |
Fruit and ornamentals | 395 | 17 |
Firewood | 202 | 9 |
Medicines and herbs | 62 | 3 |
Wildlife habitat | 29 | 1 |
Total | 2321 |
Species | TF | PF | MH | FO | FW | WF | WH | FC (human) | FC (wildlife) | NU | UR |
---|---|---|---|---|---|---|---|---|---|---|---|
Hyeromina duquei | 47 | 47 | 0 | 47 | 0 | 47 | 0 | 47 | 47 | 4 | 188 |
Citharexylum montanum | 38 | 38 | 0 | 38 | 38 | 33 | 0 | 38 | 33 | 5 | 185 |
Eugenia crassimarginata | 42 | 42 | 0 | 42 | 0 | 38 | 0 | 42 | 38 | 4 | 164 |
Vismia tomentosa | 43 | 43 | 0 | 0 | 43 | 9 | 0 | 43 | 9 | 4 | 138 |
Delostoma integrifolium | 33 | 33 | 0 | 33 | 33 | 0 | 3 | 33 | 3 | 5 | 135 |
Alnus acuminata | 33 | 33 | 0 | 33 | 33 | 0 | 1 | 33 | 1 | 5 | 133 |
Sapium contortum | 33 | 33 | 0 | 0 | 33 | 34 | 0 | 33 | 34 | 4 | 133 |
Ocotea insularis | 44 | 44 | 0 | 0 | 0 | 36 | 0 | 44 | 36 | 3 | 124 |
Ficus maxima | 29 | 29 | 29 | 0 | 0 | 27 | 0 | 29 | 27 | 4 | 114 |
Ceroxylon echinulatum | 20 | 20 | 0 | 20 | 0 | 25 | 25 | 20 | 25 | 5 | 110 |
Erythrina edulis | 0 | 31 | 0 | 31 | 0 | 43 | 0 | 31 | 43 | 3 | 105 |
Tibouchina mollis | 0 | 44 | 0 | 44 | 0 | 5 | 0 | 44 | 5 | 3 | 93 |
Alchornea latifolia | 27 | 27 | 0 | 27 | 0 | 8 | 0 | 27 | 8 | 4 | 89 |
Nectandra acutifolia | 36 | 36 | 0 | 0 | 0 | 4 | 0 | 36 | 4 | 3 | 76 |
Saurauia prainiana | 0 | 0 | 0 | 35 | 0 | 39 | 0 | 35 | 39 | 2 | 74 |
Guarea kunthiana | 16 | 16 | 0 | 16 | 0 | 15 | 0 | 16 | 15 | 4 | 63 |
Weinmannia macrophylla | 30 | 30 | 0 | 0 | 0 | 1 | 0 | 30 | 1 | 3 | 61 |
Inga aff. acuminata | 16 | 16 | 0 | 16 | 0 | 13 | 0 | 16 | 13 | 4 | 61 |
Trichilia septentrionalis | 13 | 13 | 0 | 13 | 0 | 6 | 0 | 13 | 6 | 4 | 45 |
Clusia lineata | 14 | 14 | 0 | 0 | 14 | 2 | 0 | 14 | 2 | 4 | 44 |
Cedrela montana | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 0 | 1 | 43 |
Oreopanax palamophyllus | 14 | 14 | 14 | 0 | 0 | 1 | 0 | 14 | 1 | 4 | 43 |
Hedyosmum luteynii | 0 | 0 | 19 | 0 | 0 | 12 | 0 | 19 | 12 | 2 | 31 |
Turpinia aff. occidentalis | 10 | 10 | 0 | 0 | 0 | 11 | 0 | 10 | 11 | 3 | 31 |
Critoniopsis occidentalis | 5 | 5 | 0 | 0 | 5 | 3 | 0 | 5 | 3 | 4 | 18 |
Solanum cf. hypermegethes | 3 | 3 | 0 | 0 | 3 | 1 | 0 | 3 | 1 | 4 | 10 |
Miconia glandulistyla | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 2 | 4 |
Jungleus (unidentified sp.) | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 2 |
Nectandra sp | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Morus insignes | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Musmus (unidentified sp.) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Pandola (unidentified sp.) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Indices | Rank | |||||
---|---|---|---|---|---|---|
Species | RFC | RI | CV | RFC | RI | CV |
Hyeromina duquei | 0.979 | 0.900 | 2.191 | 1 | 1 | 1 |
Citharexylum montanum | 0.740 | 0.878 | 2.036 | 6 | 2 | 2 |
Eugenia crassimarginata | 0.833 | 0.826 | 1.627 | 2 | 3 | 3 |
Sapium contortum | 0.698 | 0.756 | 1.105 | 7 | 4 | 4 |
Ocotea insularis | 0.833 | 0.726 | 0.923 | 2 | 6 | 5 |
Vismia tomentosa | 0.542 | 0.677 | 0.890 | 9 | 11 | 6 |
Ficus maxima | 0.583 | 0.698 | 0.792 | 8 | 7 | 7 |
Ceroxylon echinulatum | 0.469 | 0.739 | 0.767 | 11 | 5 | 8 |
Delostoma integrifolium | 0.375 | 0.691 | 0.753 | 14 | 9 | 9 |
Erythrina edulis | 0.771 | 0.694 | 0.723 | 4 | 8 | 10 |
Alnus acuminata | 0.354 | 0.681 | 0.701 | 16 | 10 | 11 |
Tibouchina lepidota | 0.510 | 0.561 | 0.424 | 10 | 15 | 12 |
Alchornea pearcei | 0.365 | 0.586 | 0.386 | 15 | 13 | 13 |
Saurauia aff. tomentosa | 0.771 | 0.594 | 0.340 | 4 | 12 | 14 |
Nectandra acutifolia | 0.417 | 0.513 | 0.283 | 13 | 17 | 15 |
Guarea kunthiana | 0.323 | 0.565 | 0.242 | 17 | 14 | 16 |
Inga aff. acuminata | 0.302 | 0.554 | 0.219 | 20 | 16 | 17 |
Weinmannia macrophylla | 0.323 | 0.465 | 0.176 | 17 | 21 | 18 |
Trichilia septentrionalis | 0.198 | 0.501 | 0.106 | 22 | 18 | 19 |
Clusia lineata | 0.167 | 0.485 | 0.087 | 23 | 19 | 20 |
Oreopanax palamophyllus | 0.156 | 0.480 | 0.080 | 24 | 20 | 21 |
Turpinia aff. occidentalis | 0.219 | 0.412 | 0.061 | 21 | 24 | 22 |
Hedyosmum luteynii | 0.323 | 0.365 | 0.060 | 17 | 25 | 23 |
Cedrela montana | 0.448 | 0.329 | 0.057 | 12 | 26 | 24 |
Critoniopsis occidentalis | 0.083 | 0.443 | 0.018 | 25 | 22 | 25 |
Solanum cf. hypermegethes | 0.042 | 0.421 | 0.005 | 26 | 23 | 26 |
Miconia glandulistyla | 0.042 | 0.221 | 0.001 | 26 | 27 | 27 |
Jungleus (unidentified sp.) | 0.021 | 0.211 | 0.000 | 28 | 28 | 28 |
Morus insignes | 0.010 | 0.105 | 0.000 | 29 | 29 | 28 |
Nectandra sp. | 0.010 | 0.105 | 0.000 | 29 | 29 | 28 |
Musmus (unidentified sp.) | 0.010 | 0.105 | 0.000 | 29 | 29 | 28 |
Pandola (unidentified sp.) | 0.010 | 0.105 | 0.000 | 29 | 29 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariscal, A.; Tigabu, M.; Savadogo, P.; Odén, P.C. Regeneration Status and Role of Traditional Ecological Knowledge for Cloud Forest Ecosystem Restoration in Ecuador. Forests 2022, 13, 92. https://doi.org/10.3390/f13010092
Mariscal A, Tigabu M, Savadogo P, Odén PC. Regeneration Status and Role of Traditional Ecological Knowledge for Cloud Forest Ecosystem Restoration in Ecuador. Forests. 2022; 13(1):92. https://doi.org/10.3390/f13010092
Chicago/Turabian StyleMariscal, Ana, Mulualem Tigabu, Patrice Savadogo, and Per Christer Odén. 2022. "Regeneration Status and Role of Traditional Ecological Knowledge for Cloud Forest Ecosystem Restoration in Ecuador" Forests 13, no. 1: 92. https://doi.org/10.3390/f13010092
APA StyleMariscal, A., Tigabu, M., Savadogo, P., & Odén, P. C. (2022). Regeneration Status and Role of Traditional Ecological Knowledge for Cloud Forest Ecosystem Restoration in Ecuador. Forests, 13(1), 92. https://doi.org/10.3390/f13010092