Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Density (ISO 3131:1996)
Wood Type | Mean Value Bulk Density (kg/m3) | Min/Max (kg/m3) | Source |
---|---|---|---|
Paulownia tomentosa x elongata (Spain) | 266 (22) | 238/297 | Present study |
Paulownia tomentosa x elongata (Bulgaria) | 250 (26) | 198/307 | Present study |
Paulownia tomentosa x elongata (Serbia) | 259 (31) | 201/313 152/237 262/360 178/270 179/270 | Present study |
Paulownia tomentosa (Hungary) | 246 | Koman and Feher [1] | |
Paulownia tomentosa (Hungary) | 300 (26.59) | Koman and Vityi (2017) | |
Paulownia tomentosa (Türkiye) | 272 | Akyildiz and Kol [3] | |
Paulownia tomentosa (Portugal) | 460 | Estevez et al. [11] | |
Paulownia COTE-2 (Spain) | 216 | Lachowiz et al. [36] | |
Paulownia Sp. Siebold and Zucc. (Bulgaria) | 220 | Bardarov and Popovska [37] | |
Balsa | 160 | Wiekiping and Doyle [38] | |
Poplar | 440 | Grosser [39] | |
Spruce | 430 | Grosser [39] |
3.2. Sorption Behavior (DIN 52184:1979)
Wood Type | Mean Value Axial (%) | Mean Value Radial (%) | Mean Value Tangential (%) | Source |
---|---|---|---|---|
Paulownia (Spain) | 0.375 (0.048) | 0.504 (0.077) | 1.58 (0.234) | Present study |
Paulownia (Bulgaria) | 0.157 (0.057) | 0.52 (0.17) | 0.978 (0.181) | Present study |
Paulownia (Serbia) | 0.199 (0.050) | 0.456 (0.087) | 1.266 (0.277) | Present study |
Paulownia (Hungary) | 0.69 | 3.2 | 5 | Koman and Feher [1] |
Paulownia (Türkiye) | 0.07 | 0.17 | Akyildiz and Kol [3] | |
Paulownia (Spain) | 0.172 (0.118) | 1.99 (0.44) | 5.19 (0.62) | Lachowicz et al. [36] |
Paulownia (Croatia) | 0.35 (0.332) | 2.47 (0.631) | 5.3 (0.969) | Sedlar et al. [35] |
3.3. Width of Annual Rings
Wood Type | Mean Value Annual Ring Width (cm) | Min./Max. (cm) |
---|---|---|
Paulownia (Spain) | 2.8 (1.08) | 1.2/7.5 |
Paulownia (Bulgaria) | 4.6 (0.62) | 3.7/5.7 |
Paulownia (Serbia) | 1.7 (6.77) | 0.6/3.1 |
3.4. Brinell Hardness (DIN 1534:2022)
Wood Species | Mean Value Brinell Hardness (N/mm2) | Source | ||
---|---|---|---|---|
Axial | Radial | Tangential | ||
Paulownia (Spain) | 20.6 (5.56) | 5.6 (1.53) | 4.8 (1.19) | Present study |
Paulownia (Bulgaria) | 18.7 (3.1) | 5.6 (1.35) | 5.3 (1.35) | Present study |
Paulownia (Serbia) | 21.22 (7,64) | 6.1 (3.23) | 5.81 (2.13) 9.13 (2.16) 9.016 (0.23) | Present study |
Paulownia (Hungary) | 26.74 (3.22) | 9.51 (2.17) | Koman and Vityi [16] | |
Paulownia (Bulgaria) | 20 | Bardanovand Popovska [37] | ||
Paulownia (Türkiye) | 19.7 (0.37) | 8.23 (0.09) | Akyildiz and Kol [3] | |
Balsa | 7 | Finger [43] | ||
Black poplar | 25–33 | 10–15 | Richter and Ehmke [44] | |
Spruce | 32 | 12 | Richter and Ehmke [44] |
3.5. Modulus of Rupture and Modulus of Elasticity (DIN 52186:1978)
Wood Species | Mean Values MOR [N/mm2] | Min./Max. [N/mm2] | Source |
---|---|---|---|
Paulownia (Spain) | 39.77 (6.98) | 28.96/50.5 | Present study |
Paulownia (Bulgaria) | 35.53 (5.53) | 24.57/43.99 | Present study |
Paulownia (Serbia) | 37.54 (8.54) | 24.84/59.48 | Present study |
Paulownia (Bulgaria) | 35 | Baranov and Popovska [37] | |
Paulownia (Türkiye) | 43.56 (7.00) | 33.36/60.37 | Akyildiz and Kol [3] |
Paulownia (Hungary) | 32.3 (4.68) | 28.65/48.65 | Koman and Vityi [1,16] |
Paulownia (Portugal) | 53.5 (6) | - | Esteves et al. [11] |
Paulownia (Spain) | 38.63 | 23.89/53.17 | Lachowicz et al. [36] |
Balsa | 16.63 (1.72) | - | Kotlarewski et al. [45] |
Spruce | 80 | Richter and Ehmcke [44] | |
Oak | 95 | Richter and Ehmcke [44] | |
Black poplar | 55–65 | Richter and Ehmcke [44] |
Wood Species | Mean Values MOE [N/mm2] | Min./Max. [N/mm2] | Source |
---|---|---|---|
Paulownia (Spain) | 4866.49 (797.84) | 3580/5941 | Present study |
Paulownia (Bulgaria) | 3714.14 (588.51) | 2685/4899 | Present study |
Paulownia (Serbia) | 4532.49 (900.92) | 2733/6492 | Present study |
Paulownia (Spain) | 1898.75 | 1167/2690 | Lachowicz et al. [36] |
Balsa | 2900 | - | Sell [46] |
Black Poplar | 8800 | - | Grosser [39] |
Spruce | 11,000 | - | Richter and Ehmke [44] |
Larch | 13,800 | Grosser [39] | |
Oak | 13,000 | - | Grosser [39] |
3.6. Compressive Strength (DIN 52185:1976)
Wood Species | Compressive Strength [N/mm2] | Min./Max. [N/mm2] | Source |
---|---|---|---|
Paulownia (Spain) | 22.53 (3.17) | 18.7/28.12 | Present study |
Paulownia (Bulgaria) | 18.77 (1.5) | 16.25/21.71 | Present study |
Paulownia (Serbia) | 21.41 (4.55) | 14.39/32.01 | Present study |
Paulownia (Hungary) | 19.9 (1.78) | 19.63/25.24 | Koman and Vityi [1,16] |
Paulownia (Spain) | 14.24 (1.52) | 10.45/18.29 20.35/29.42 | Lachowicz et al. [36] |
Paulownia (Türkyie) | 35.56 (6.95) | Kaymakci et al. [47] | |
Paulownia (Türkyie) | 25.55 (2.25) | Akyildiz and Kol [3] | |
Balsa | 10 | Wiekiping and Doyle [38] | |
Spruce | 45 | Richter and Ehmke [44] | |
Black poplar | 30 | Grosser [39] |
3.7. Tensile Strength (DIN 52188:1979-05)
Wood Species | Tensile Strength [N/mm2] | Min./Max. [N/mm2] | Source |
---|---|---|---|
Paulownia (Spain) | 44.12 (10.66) | 28.1/64.59 | Present study |
Paulownia (Bulgaria) | 36.17 (6.69) | 27.60/51.08 | Present study |
Paulownia (Serbia) | 40.14 (9.11) | 25.62/62.27 | Present study |
Paulownia (Hungary) | 33.25 (8.9) | 21.86/52.96 | Koman and Vityi [16] |
Balsa | 14 | Forest Products Laboratory [48] | |
Spruce | 95 | Richter and Ehmcke [44] | |
Oak | 110 | Richter and Ehmcke [44] | |
Black poplar | 77 | Richter and Ehmcke [44] |
3.8. Screw Withdrawal Resistance (EN 320:2011)
Wood Species | Screw Withdrawal Resistance (N/mm) | Min./Max. (N/mm) | Source |
---|---|---|---|
Paulownia (Spain) | 55.56 (6.6) | 41.48/63.47 | Present study |
Paulownia (Bulgaria) | 51.95 (13.66) | 31.4/87.74 | Present study |
Paulownia (Serbia) | 56.55 | 34.24/91.72 | Present study |
Paulownia (Türkiye) | 50.5 (7.87) | Akyildiz [49] | |
Black pine | 152 | Aytekin [50] | |
Fir | 108 | Aytekin [50] | |
Oak | 170 | Aytekin [50] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koman, S.; Feher, S. Physical and mechanical properties of Paulownia clone in vitro 112. Eur. J. Wood Prod. 2020, 78, 421–423. [Google Scholar] [CrossRef]
- Jensen, J.B. An Investigation into the Suitability of Paulownia as an Agroforestry Species for UK & NW European Farming Systems. Master’s Dissertation, Coventry University, Coventry, UK, 2016. [Google Scholar]
- Akyildiz, M.H.; Kol, H.S. Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood. J. Environ. Biol. 2010, 31, 351–355. [Google Scholar] [PubMed]
- Gyuleva, V.; Stankova, T.; Zhyanski, M.; Glushkova, M.; Andonova, E. Growth and Development of Paulownia tomentosa and Paulownia elongata x fortunei in Glasshouse Experiment. Bulg. J. Soil Sci. 2020, 5, 126–142. [Google Scholar]
- Jakubowski, M. Cultivation Potential and Uses of Paulownia Wood: A Review. Forests 2022, 13, 668. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, L.; Zhao, Y.; Qiao, J.; Wang, B.; Yang, C.; Zhou, H.; Chang, D. Comprehensive Selection of the Wood Properties of Paulownia Clones Grown in the Hilly Region of Southern China: Feng, Y. et al. BioResources 2020, 15, 1098–1111. [Google Scholar] [CrossRef]
- Abbasi, M.; Pishvaee, M.S.; Bairamzadeh, S. Land suitability assessment for Paulownia cultivation using combined GIS and Z-number DEA: A case study. Comput. Electron. Agric. 2020, 176, 105666. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Wic-Baena, C.; Moreno, J.L.; Dadi, T.; García, C.; Andrés-Abellán, M. Microbial activity in soils under fast-growing Paulownia (Paulownia elongata x fortunei) plantations in Mediterranean areas. Appl. Soil Ecol. 2011, 51, 42–51. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, G.; Zhai, X.; Xu, P.; Ma, L.; Deng, M.; Zhao, Z.; Yang, H.; Dong, Y.; Shang, Z.; et al. Genomic insights into the fast growth of paulownias and the formation of Paulownia witches’ broom. Mol. Plant 2021, 14, 1668–1682. [Google Scholar] [CrossRef]
- Tu, J.; Wang, B.; McGrouther, K.; Wang, H.; Ma, T.; Qiao, J.; Wu, L. Soil quality assessment under different Paulownia fortunei plantations in mid-subtropical China. J. Soils Sediments 2017, 17, 2371–2382. [Google Scholar] [CrossRef]
- Esteves, B.; Cruz-Lopes, L.; Viana, H.; Ferreira, J.; Domingos, I.; Nunes, L.J.R. The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud. Forests 2022, 13, 700. [Google Scholar] [CrossRef]
- Świechowski, K.; Stegenta-Dąbrowska, S.; Liszewski, M.; Bąbelewski, P.; Koziel, J.A.; Białowiec, A. Oxytree Pruned Biomass Torrefaction: Process Kinetics. Materials 2019, 12, 3334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yorgun, S.; Yıldız, D.; Şimşek, Y.E. Activated carbon from paulownia wood: Yields of chemical activation stages. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2035–2042. [Google Scholar] [CrossRef]
- Kalaycioglu, H.; Deniz, I.; Hiziroglu, S. Some of the properties of particleboard made from paulownia. J. Wood Sci. 2005, 51, 410–414. [Google Scholar] [CrossRef]
- Dogu, D.; Tuncer, F.D.; Bakir, D.; Candan, Z. Characterizing Microscopic Changes of Paulownia Wood under Thermal Compression. BioResources 2017, 12, 5279–5295. [Google Scholar] [CrossRef]
- Komán, S.; Vityi, A. Physical and mechanical properties of paulownia tomentosa wood planted in Hungaria. Wood Res. 2017, 62, 335–340. [Google Scholar]
- Yadav, N.K.; Vaidya, B.N.; Henderson, K.; Lee, J.F.; Stewart, W.M.; Dhekney, S.A.; Joshee, N. A Review of Paulownia Biotechnology: A Short Rotation, Fast Growing Multipurpose Bioenergy Tree. Am. J. Plant Sci. 2013, 04, 2070–2082. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Kaymakci, A. Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood. Ind. Crops Prod. 2013, 43, 457–464. [Google Scholar] [CrossRef]
- Bergmann, B.A. Propagation method influences first year field survival and growth of Paulownia. New For. 1998, 16, 251–264. [Google Scholar] [CrossRef]
- Hussain, K.; Nasir, G.M.; Hussain, T. Comparison of wood anatomy of different Paulownia species grown in Pakistan. Pak. J. For. 2016, 66, 2. [Google Scholar]
- Snow, W.A. Ornamental, crop, or invasive? The history of the Empress tree (Paulownia) in the USA. For Trees Livelihoods 2015, 24, 85–96. [Google Scholar] [CrossRef]
- Hua, L.S.; Chen, L.W.; Geng, B.J.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Rahandi Lubis, M.A.; Fatriasari, W.; et al. Particleboard from Agricultural Biomass and Recycled Wood Waste: A Review. J. Mater. Res. Technol. 2022. [Google Scholar] [CrossRef]
- Kang, K.H.; Huh, H.; Kim, B.-K.; Lee, C.-K. An antiviral furanoquinone fromPaulownia tomentosa steud. Phytother. Res. 1999, 13, 624–626. [Google Scholar] [CrossRef]
- He, T.; Vaidya, B.; Perry, Z.; Parajuli, P.; Joshee, N. Paulownia as a Medicinal Tree: Traditional Uses and Current Advances. Eur. J. Med. Plants 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Icka, P.; Damo, R.; Icka, E. Paulownia Tomentosa, a Fast Growing Timber. Ann. ”Valahia” Univ. Targoviste-Agric. 2016, 10, 14–19. [Google Scholar] [CrossRef]
- El-Showk, N.; El-Showk, S. The Paulownia Tree, An Alternative for Sustainable Forestry; The Farm: Wuhan, China, 2003; Available online: https://docslib.org/doc/11683191/the-paulownia-tree-an-alternative-for-sustainable-forestry (accessed on 15 July 2022).
- Essl, F. From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia 2007, 79, 377–389. [Google Scholar]
- DIN 52184:1979-05. Testing of Wood; Determination of Swelling and Shrinkage. Deutsches Institut für Normung: Berlin, Germany, 1979.
- ISO 3131:1996-06-01. Wood-Determination of Density for Physical and Mechanical Tests. European Committee for Standardization: Brussels, Belgium, 1996.
- EN 1534:2011-01. Wood Flooring-Determination of Resistance to Indentation-Test Method. European Committee for Standardization: Brussels, Belgium, 2011.
- DIN 52186:1978-06. Testing of Wood; Bending Test. Deutsches Institut für Normung: Berlin, Germany, 1978.
- DIN 52185:1976-09. Testing of Wood; Compression Test Parallel to Grain. Deutsches Institut für Normung: Berlin, Germany, 1976.
- DIN 52188:1979-05. Testing of Wood; Determination of Ultimate Tensile Stress Parallel to Grain. Deutsches Institut für Normung: Berlin, Germany, 1979.
- EN 320:2011. Particleboards and Fibreboards-Determination of Resistance to Axial Withdrawal of Screws. European Committee for Standardization: Brussels, Belgium, 2011.
- Sedlar, T.; Šefc, B.; Drvodelić, D.; Jambreković, B.; Kučinić, M.; Ištok, I. Physical Properties of Juvenile Wood of Two Paulownia Hybrids. Drv. Ind. 2020, 71, 179–184. [Google Scholar] [CrossRef]
- Lachowicz, H.; Giedrowicz, A. Charakterystyka jakości technicznej drewna paulowni COTE−2. Sylwan 2020, 164, 414–423. [Google Scholar] [CrossRef]
- Bardarov, N.; Popovska, T. Examination of the properties of local origin Paulownia wood. (Paulownia sp. Siebold & Zucc.). Manag. Sustain. Dev. 2017, 2, 75–78. [Google Scholar]
- Wiepking, C.A.; Doyle, D.V. Strength and Related Properties of Balsa and Quipo Woods, Madison, USA. 1960. Available online: https://ir.library.oregonstate.edu/concern/defaults/sx61dq95c?locale=en (accessed on 15 July 2022).
- Grosser, D. Die Hölzer Mitteleuropas: Ein Mikrophotographischer Lehratlas, Reprint der 1. Aufl. von 1977; Remagen: Kessel, The Netherlands, 2007; ISBN 3935638221. [Google Scholar]
- Byrne, C.E.; Nagle, D.C. Carbonization of wood for advanced materials applications. Carbon 1997, 35, 259–266. [Google Scholar] [CrossRef]
- Borrega, M.; Gibson, L.J. Mechanics of balsa (Ochroma pyramidale) wood. Mech. Mater. 2015, 84, 75–90. [Google Scholar] [CrossRef]
- Ciftci, A.; Kaya, Z. Genetic diversity and structure of Populus nigra populations in two highly fragmented river ecosystems from Turkey. Tree Genet. Genomes 2019, 15, 66. [Google Scholar] [CrossRef]
- Finger, M. Balsaholz (Ochroma pyramidale). Available online: http://www.holzwurm-page.de/holzarten/holzart/balsaholz.htm. (accessed on 15 July 2022).
- Richter, K.; Ehmcke, G. Das Holz der Fichte–Eigenschaften und Verwendung. LWF Wissen 2017, 80, 117–124. [Google Scholar]
- Kotlarewski, N.J.; Belleville, B.; Gusamo, B.K.; Ozarska, B. Mechanical properties of Papua New Guinea balsa wood. Eur. J. Wood Prod. 2016, 74, 83–89. [Google Scholar] [CrossRef]
- Sell, J. Eigenschaften und Kenngrössen von Holzarten, 4; Bachfach Verlag: Zürich, Switzerland, 1997; ISBN 3855652236. [Google Scholar]
- Kaymakci, A.; Bektas, I.; Bal, B.C. Some mechanical properties of Paulownia (Paulownia elongata) wood. In Proceedings of the International Caucasian Symposyum, Artvin, Turkey, 26–27 September 2013; pp. 917–920. [Google Scholar]
- Forest Products Laboratory. Wood Handbook: Wood as an Engineering Material; USDA Forest Service: Madison, WI, USA, 1999. [Google Scholar]
- Akyildiz, M.H. Screw-nail withdrawal and bonding strength of paulownia (Paulownia tomentosa Steud.) wood. J. Wood Sci. 2014, 60, 201–206. [Google Scholar] [CrossRef]
- Aytekin, A. Determination of screw and nail withdrawal resistance of some important wood species. Int. J. Mol. Sci. 2008, 9, 626–637. [Google Scholar] [CrossRef] [PubMed]
Test | Norm | n Samples nr. | Sample Dimension [mm] |
---|---|---|---|
Swelling and shrinkage Bulk density (kg/m3) | DIN 52184:1979-05 ISO 3131:1996 | 12 12 | 20 × 20 × 10 |
Brinell-hardness (N/mm2) | EN 1534:2011-01 | 10 | - |
3-point modulus of elasticity (MOE) (N/mm2) 3-point modulus of rupture (MOR) (N/mm2) | DIN 52186:1978-06 DIN 52186:1978-06 | 12 | 20 × 20 × 360 |
Compressive strength (N/mm2) | DIN 52185:1976-09 | 12 | 20 × 20 × 50 |
Tensile shear strength (N/mm2) | DIN 52188:1979-05 | 15 | 20 × 6 at predetermined breaking point |
Screw withdrawal resistance (N/mm) | EN 320:2011-07 | 9 | 50 × 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, M.C.; Buresova, K.; Tudor, E.M.; Petutschnigg, A. Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations. Forests 2022, 13, 1543. https://doi.org/10.3390/f13101543
Barbu MC, Buresova K, Tudor EM, Petutschnigg A. Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations. Forests. 2022; 13(10):1543. https://doi.org/10.3390/f13101543
Chicago/Turabian StyleBarbu, Marius Cătălin, Katharina Buresova, Eugenia Mariana Tudor, and Alexander Petutschnigg. 2022. "Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations" Forests 13, no. 10: 1543. https://doi.org/10.3390/f13101543
APA StyleBarbu, M. C., Buresova, K., Tudor, E. M., & Petutschnigg, A. (2022). Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations. Forests, 13(10), 1543. https://doi.org/10.3390/f13101543