Effects of Fertilizers and Litter Treatment on Soil Nutrients in Korean Pine Plantation and its Natural Forest of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Experimental Design and Treatments
2.3. Soil Sampling
2.4. Determination of Total Soil Phosphorus, Total Soil Nitrogen and Soil Organic Carbon
2.5. Statistical Analysis
3. Results
3.1. Effect of Different Litter Treatments at Various N and P Levels on SOC
3.2. Effect of Different Litter Treatments at Various N and P Levels on C:N
3.3. Effect of Different Litter Treatments at Various N and P Levels on STN
3.4. Effect of Different Litter Treatments at Various N and P Levels on STP
3.5. Effect of Forest Litter and NP Fertilizer on Correlation of Various Variables
3.6. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, L.R.; Trammell, T.L.; Bishop, T.J.; Barth, J.; Drzyzga, S.; Jantz, C. Squeezed from all sides: Urbanization, invasive species, and climate change threaten riparian forest buffers. Sustainability 2020, 12, 1448. [Google Scholar] [CrossRef]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2006, 81, 1–31. [Google Scholar] [CrossRef]
- Holub, S.M.; Lajtha, K.; Spears, J.D.; Tóth, J.A.; Crow, S.E.; Caldwell, B.A.; Papp, M.; Nagy, P.T. Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. For. Ecol. Manag. 2005, 214, 320–330. [Google Scholar] [CrossRef]
- Kalbitz, K.; Meyer, A.; Yang, R.; Gerstberger, P. Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry 2007, 86, 301–318. [Google Scholar] [CrossRef]
- García-Palacios, P.; Maestre, F.T.; Kattge, J.; Wall, D.H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 2013, 16, 1045–1053. [Google Scholar] [CrossRef]
- Xu, S.; Liu, L.L.; Sayer, E.J. Variability of above-ground litter inputs alters soil physicochemical and biological processes: A meta-analysis of litterfall-manipulation experiments. Biogeosciences 2013, 10, 7423–7433. [Google Scholar] [CrossRef]
- Vincent, A.G.; Turner, B.L.; Tanner, E.V. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur. J. Soil. Sci. 2010, 61, 48–57. [Google Scholar] [CrossRef]
- Schreeg, L.A.; Mack, M.C.; Turner, B.L. Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two-time scales. Biogeochemistry 2013, 113, 507–524. [Google Scholar] [CrossRef]
- Sayer, E.J.; Tanner, E.V. Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J. Ecol. 2010, 98, 1052–1062. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Peng, Y.; Song, S.Y.; Li, Z.Y.; Li, S.; Chen, G.T.; Hu, H.L.; Xie, J.L.; Chen, G.; Xiao, Y.L.; Liu, L.; et al. Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil. Biol. Biochem. 2020, 142, 107694. [Google Scholar] [CrossRef]
- Weintraub, M.N.; Scott-Denton, L.E.; Schmidt, S.K.; Monson, R.K. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 2007, 154, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; He, K.; Zhang, Q.; Han, M.; Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Chang. Biol. 2022, 28, 3426–3440. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, M.D.; Lobartini, J.C. Particulate organic matter, carbohydrate, humic acid contents in soil macro-and microaggregates as affected by cultivation. Geoderma 2006, 136, 660–665. [Google Scholar] [CrossRef]
- Miao, R.; Ma, J.; Liu, Y.; Liu, Y.; Yang, Z.; Guo, M. Variability of aboveground litter inputs alters soil carbon and nitrogen in a coniferous–broadleaf mixed forest of Central China. Forests 2019, 10, 188. [Google Scholar] [CrossRef]
- Li, P. Effects of Understory Removal and Litter Addition on the Key Soil Ecological Processes in Cunninghamia Lanceolate Plantation; Jiangxi Agricultural University: Nanchang, China, 2017; p. 31. [Google Scholar]
- Chen, G.S.; Yang, Z.J.; Gao, R.; Xie, J.S.; Guo, J.F.; Huang, Z.Q.; Yang, Y.S. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 2013, 300, 68–76. [Google Scholar] [CrossRef]
- Li, C.; Chen, L.; Duan, W.; Li, S.; Li, Y.; Yu, Y.; Zhu, J.; Zhao, G. Effects of litter treatment on soil organic carbon, total nitrogen and phosphorus in different forest types. China Soil. Water Conserv. Sci. 2020, 18, 100–109. [Google Scholar]
- Peng, L.; Wang, X.J.; Huang, C.D.; Li, K.Z. Effects of litter input change on soil organic carbon in Dendrocalamus affinnis forest. Bullet Soil. Water Conserv. 2014, 34, 129–132. [Google Scholar]
- Wang, Q.K.; Wang, S.L.; Yu, X.J.; Zhang, J.; Liu, Y.X. Effects of Cunninghamia lanceolata-broadleaved tree species mixed leaf litters on active soil organic matter. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2007, 18, 1203–1207. [Google Scholar]
- Foster, C.H. Forests in time: The environmental consequences of 1,000 years of change in New England. J. Interdiscip. Hist. 2005, 36, 270–271. [Google Scholar] [CrossRef]
- Crow, S.E.; Lajtha, K.; Bowden, R.D.; Yano, Y.; Brant, J.B.; Caldwell, B.A.; Sulzman, E.W. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. For. Ecol. Manag. 2009, 258, 2224–2232. [Google Scholar] [CrossRef]
- Ping, C.; Bo, Z.; Lu, Y.; Xiuhai, Z.; Chunyu, Z.; Zichao, Y. Effects of earthworm and litter application on soil nutrients and soil microbial biomass and activities in Pinus tabuliformis plantation. J. Beijing For. Univ. 2018, 40, 63–71. [Google Scholar]
- Zhao, S.; Zhao, Y.; Wu, J. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau. Sci. China Earth Sci. 2010, 53, 617–625. [Google Scholar] [CrossRef]
- Deng, L.; Wang, K.B.; Chen, M.L.; Shangguan, Z.P.; Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena 2013, 110, 1–7. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W.; Wang, K.; Pan, F.; Yang, S.; Shu, S. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China. Sci. Total. Environ. 2015, 521, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wu, X.; Xiang, W.H.; Fang, X.; Zeng, Y.L.; Ouyang, S.; Lei, P.F.; Deng, X.W.; Peng, C.H. Spatial variations in soil organic carbon, nitrogen and phosphorus concentrations related to stand characteristics in subtropical areas. Plant Soil. 2017, 413, 289–301. [Google Scholar] [CrossRef]
- Burton, J.; Chen, C.; Xu, Z.; Ghadiri, H. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil. Biol. Biochem. 2007, 39, 426–433. [Google Scholar] [CrossRef]
- Jourgholami, M.; Feghhi, J.; Picchio, R.; Tavankar, F.; Venanzi, R. Efficiency of leaf litter mulch in the restoration of soil physiochemical properties and enzyme activities in temporary skid roads in mixed high forests. Catena 2021, 198, 105012. [Google Scholar] [CrossRef]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (Alnus subcordata) growth. New For. 2020, 51, 349–365. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khoramizadeh, A.; Lo Monaco, A.; Venanzi, R.; Latterini, F.; Tavankar, F.; Picchio, R. Evaluation of leaf litter mulching and incorporation on skid trails for the recovery of soil physico-chemical and biological properties of mixed broadleaved forests. Land 2021, 10, 625. [Google Scholar] [CrossRef]
- Hoosbeek, M.R.; Scarascia-Mugnozza, G.E. Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO2 enrichment (FACE): Final results of POP-EuroFACE compared to other forest FACE experiments. Ecosystems 2009, 12, 220–239. [Google Scholar] [CrossRef]
- Sulzman, E.W.; Brant, J.B.; Bowden, R.D.; Lajtha, K. Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 2005, 73, 231–256. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil. Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Crow, S.E.; Lajtha, K.; Filley, T.R.; Swanston, C.W.; Bowden, R.D.; Caldwell, B.A. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change. Glob. Chang. Biol. 2009, 15, 2003–2019. [Google Scholar] [CrossRef]
- Yano, Y.; Lajtha, K.; Sollins, P.; Caldwell, B.A. Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: Effects of litter quality. Ecosystems 2005, 8, 286–300. [Google Scholar] [CrossRef]
- Uselman, S.M.; Qualls, R.G.; Lilienfein, J. Quality of soluble organic C, N, and P produced by different types and species of litter: Root litter versus leaf litter. Soil. Biol. Biochem. 2012, 54, 57–67. [Google Scholar] [CrossRef]
- Koranda, M.; Schnecker, J.; Kaiser, C.; Fuchslueger, L.; Kitzler, B.; Stange, C.F.; Sessitsch, A.; Zechmeister-Boltenstem, S.; Richter, A. Microbial processes and community composition in the rhizosphere of European beech–the influence of plant C exudates. Soil. Biol. Biochem. 2011, 43, 551–558. [Google Scholar] [CrossRef]
- Spohn, M.; Kuzyakov, Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil. Biol. Biochem. 2013, 61, 69–75. [Google Scholar] [CrossRef]
- Spohn, M.; Ermak, A.; Kuzyakov, Y. Microbial gross organic phosphorus mineralization can be stimulated by root exudates–a 33P isotopic dilution study. Soil. Biol. Biochem. 2013, 65, 254–263. [Google Scholar] [CrossRef]
- Tang, X.; Bernard, L.; Brauman, A.; Daufresne, T.; Deleporte, P.; Desclaux, D.; Souche, G.; Placella, S.A.; Hinsinger, P. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil. Biol. Biochem. 2014, 75, 86–93. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Emmett, B.A.; Gundersen, P.; Kjønaas, O.J.; Koopmans, C.J.; Schleppi, P.; Tietema, A.; Wright, R.F. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 1999, 398, 145–148. [Google Scholar] [CrossRef]
- Townsend, A.R.; Braswell, B.H.; Holland, E.A.; Penner, J.E. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol. Appl. 1996, 6, 806–814. [Google Scholar] [CrossRef]
- Harrington, R.A.; Fownes, J.H.; Vitousek, P.M. Production and resource use efficiencies in N-and P-limited tropical forests: A comparison of responses to long-term fertilization. Ecosystems 2001, 4, 646–657. [Google Scholar] [CrossRef]
- Ostertag, R. Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests. Ecology 2001, 82, 485–499. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide loss to the atmosphere. Proc. Natl. Acad. Sci. USA 2006, 103, 10316–10321. [Google Scholar] [CrossRef]
- Cusack, D.F.; Torn, M.S.; McDowell, W.H.; Silver, W.L. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob. Chang. Biol. 2010, 16, 2555–2572. [Google Scholar] [CrossRef]
- Swanston, C.; Homann, P.S.; Caldwell, B.A.; Myrold, D.D.; Ganio, L.; Sollins, P. Long-term effects of elevated nitrogen on forest soil organic matter stability. Biogeochemistry 2004, 70, 229–252. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Zak, D.R.; Sinsabaugh, R.L.; Gallo, M.; Lauber, C. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol. Appl. 2004, 14, 1172–1177. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Vitousek, P.M. Nutrient limitation of decomposition in Hawaiian forests. Ecology 2000, 81, 1867–1877. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Firestone, M.K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 2004, 67, 235–248. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Carreiro, M.M.; Repert, D.A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 2002, 60, 1–24. [Google Scholar] [CrossRef]
- McDowell, W.H.; Currie, W.S.; Aber, J.D.; Yang, Y. Effects of Chronic Nitrogen Amendments on Production of Dissolved Organic Carbon and Nitrogen in Forest Soils. In Biogeochemical Investigations at Watershed, Landscape, and Regional Scales; Springer: Dordrecht, The Netherlands, 1998; pp. 175–182. [Google Scholar]
- Ma, L.; Wang, F.; Zhang, W.; Ma, W.; Velthof, G.; Qin, W.; Oenema, O.; Zhang, F. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 2013, 47, 7260–7268. [Google Scholar] [CrossRef] [PubMed]
- Díez, J.A.; Hernaiz, P.; Muñoz, M.J.; De la Torre, A.; Vallejo, A. Impact of pig slurry on soil properties, water salinization, nitrate leaching and crop yield in a four-year experiment in Central Spain. Soil. Use Manag. 2004, 20, 444–450. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Gao, S.; Wang, P.; Qiu, J.; Shang, S. Impacts of simulated nitrogen deposition on soil enzyme activity in a northern temperate forest ecosystem depend on the form and level of added nitrogen. Eur. J. Soil. Biol. 2021, 103, 103287. [Google Scholar] [CrossRef]
- Shi, J.; Gong, J.; Baoyin, T.T.; Luo, Q.; Zhai, Z.; Zhu, C.; Yang, B.; Wang, B.; Zhang, Z.; Li, X. Short-term phosphorus addition increases soil respiration by promoting gross ecosystem production and litter decomposition in a typical temperate grassland in northern China. Catena 2021, 197, 104952. [Google Scholar] [CrossRef]
- Xiao, H.; Yang, H.; Zhao, M.; Monaco, T.A.; Rong, Y.; Huang, D.; Song, Q.; Zhao, K.; Wang, D. Soil extracellular enzyme activities and the abundance of nitrogen-cycling functional genes responded more to N addition than P addition in an Inner Mongolian meadow steppe. Sci. Total. Environ. 2021, 759, 143541. [Google Scholar] [CrossRef]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil. Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil. Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Wang, C.; Han, G.; Jia, Y.; Feng, X.; Guo, P.; Tian, X. Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest. Ecol. Res. 2011, 26, 505–513. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, L.; Zhong, X.; Yang, Z.; Lin, Y.; Guo, J.; Chen, G.; Yang, Y. N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest. Geoderma 2020, 375, 114470. [Google Scholar] [CrossRef]
- Qaswar, M.; Ahmed, W.; Jing, H.; Hongzhu, F.; Xiaojun, S.; Xianjun, J.; Kailou, L.; Yongmei, X.; Zhongqun, H.; Asghar, W.; et al. Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry drives phosphorus lability in paddy soil under long-term fertilization: A fractionation and path analysis study. PLoS ONE 2019, 14, e0218195. [Google Scholar] [CrossRef]
- Ahmed, W.; Qaswar, M.; Jing, H.; Wenjun, D.; Geng, S.; Kailou, L.; Ying, M.; Ao, T.; Mei, S.; Chao, L.; et al. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils. J. Soils Sediments 2020, 20, 850–861. [Google Scholar] [CrossRef]
- Chen, S.; Cade-Menun, B.J.; Bainard, L.D.; Luce, M.S.; Hu, Y.; Chen, Q. The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. Geoderma 2021, 404, 115274. [Google Scholar] [CrossRef]
- Chen, S.; Yan, Z.; Zhang, S.; Fan, B.; Cade-Menun, B.J.; Chen, Q. Nitrogen application favors soil organic phosphorus accumulation in calcareous vegetable fields. Biol. Fertil. Soils 2019, 55, 481–496. [Google Scholar] [CrossRef]
- Maillard, É.; McConkey, B.G.; Luce, M.S.; Angers, D.A.; Fan, J. Crop rotation, tillage system, and precipitation regime effects on soil carbon stocks over 1 to 30 years in Saskatchewan, Canada. Soil. Tillage Res. 2018, 177, 97–104. [Google Scholar] [CrossRef]
Sample Plot | Topographic Factors | Forest Survey Factors | Soil Factors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope Aspect | Slope Position | Slope | Altitude | Avg. | Mean Height | Stand Density | Canopy Closure | Soil Density | Total C | Total N | Total P | |
(°) | m | DBH/cm | m | (Trees·hm−2) | (g·m−3) | (g·kg−1) | ||||||
KPP | Half sunny slope | Down slope | 8 | 411.8 | 21.1 | 18.4 | 1475 | 0.75 | 0.99 | 46.08 | 2.62 | 0.31 |
NKPF | Up slope | 15 | 485 | 26.4 | 15.7 | 1175 | 0.70 | 0.80 | 47.2 | 3.02 | 0.21 |
Forest | Litter | N & P | SOC (g kg−1) | |||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | |||
KPP | CK | C | 58.90 ± 1.01 k | 58.32 ± 1.36 m | 57.31 ± 1.69 j,k | 56.36 ± 1.02 j,k | 56.16 ± 1.15 h | 55.87 ± 1.01 f |
L | 60.93 ± 1.25 i,j | 60.35 ± 2.81 i–k | 59.34 ± 1.89 h,i | 55.03 ± 1.33 k | 54.93 ± 0.99 i,j | 54.54 ± 1.02 g | ||
M | 64.42 ± 2.14 c–f | 63.84 ± 3.33 d,e | 62.83 ± 1.96 c,d | 58.03 ± 2.44 g–i | 57.93 ± 1.08 e–g | 57.54 ± 1.36 e | ||
H | 62.25 ± 2.68 g–i | 61.67 ± 3.01 f–i | 60.66 ± 1.99 f,g | 59.69 ± 2.15 b–e | 59.59 ± 1.23 b,c | 59.20 ± 1.11 b,c | ||
RL | C | 72.67 ± 3.65 a | 72.09 ± 4.05 a | 71.08 ± 4.11 a | 56.36 ± 1.36 j,k | 56.26 ± 1.15 h | 55.87 ± 1.05 d,e | |
L | 62.33 ± 2.45 g–i | 61.47 ± 3.15 g–i | 60.74 ± 3.89 f,g | 57.36 ± 2.11 h–j | 57.26 ± 1.30 f–h | 56.87 ± 1.25 f | ||
M | 64.33 ± 3.12 d–f | 63.85 ± 2.69 d,e | 62.74 ± 3.04 c,d | 59.69 ± 1.88 b–e | 59.59 ± 1.25 b,c | 59.20 ± 1.05 b,c | ||
H | 64.67 ± 3.55 d–g | 64.49 ± 3.45 c,d | 63.08 ± 2.36 c,d | 60.36 ± 1.56 b,c | 60.26 ± 1.36 b | 59.87 ± 1.36 b | ||
AL | C | 61.68 ± 2.98 h,i | 61.09 ± 3.78 h–j | 60.08 ± 1.05 g,h | 58.36 ± 2.12 g–h | 58.26 ± 1.25 d–f | 57.87 ± 1.21 d,e | |
L | 63.00 ± 2.78 d–g | 62.42 ± 2.63 e–h | 61.41 ± 1.99 e,f | 59.03 ± 2.15 d–g | 58.93 ± 1.36 | 58.54 ± 1.25 c,d | ||
M | 65.00 ± 3.41 c,d | 64.44 ± 2.96 c,d | 63.41 ± 2.46 b,c | 60.76 ± 2.36 b | 60.36 ± 1.25 b | 59.87 ± 1.05 b | ||
H | 66.00 ± 3.29 b,c | 65.41 ± 3.45 b,c | 64.41 ± 1.36 b | 62.14 ± 2.45 a | 62.66 ± 1.89 a | 61.87 ± 1.36 a | ||
NKPF | CK | C | 59.67 ± 3.45 j,k | 59.09 ± 1.09 k–m | 57.53 ± 2.14 j,k | 56.56 ± 1.00 j,k | 56.06 ± 1.05 h,i | 55.87 ± 1.36 f |
L | 59.00 ± 3.69 k | 58.42 ± 1.11 l,m | 56.86 ± 1.88 k | 54.66 ± 2.01 l | 54.21 ± 1.04 j | 53.87 ± 1.04 g | ||
M | 63.00 ± 2.89 f–h | 62.49 ± 2.15 e–h | 60.86 ± 1.96 f,g | 57.13 ± 1.18 I,j | 56.94 ± 1.09 g,h | 56.54 ± 1.08 f | ||
H | 64.33 ± 2.78 d–f | 63.75 ± 1.89 d,e | 62.19 ± 1.15 d,e | 59.09 ± 1.36 d–g | 58.25 ± 1.63 d–f | 58.54 ± 1.45 c,d | ||
RL | C | 62.00 ± 3.41 h,i | 61.42 ± 1.02 g–i | 59.86 h,i ± 1.25 | 56.64 ± 1.05 j,k | 56.19 ± 1.41 h | 56.20 ± 2.05 f | |
L | 59.61 ± 2.78 j,k | 59.78 ± 2.15 j–l | 57.45 ± 1.96 j,k | 56.62 ± 1.11 j,k | 56.52 ± 1.03 h | 56.20 ± 1.66 f | ||
M | 62.45 ± 3.74 g–i | 62.45 ± 3.05 e–h | 60.73 ± 1.45 f,g | 59.33 ± 1.36 c–f | 59.26 ± 1.23 b–d | 58.87 ± 1.96 c | ||
H | 64.78 ± 3.69 c,d | 64.36 ± 3.96 c,d | 61.51 ± 1.39 e,f | 59.69 ± 1.58 e–g | 59.59 ± 1.05 b,c | 59.20 ± 1.05 b,c | ||
AL | C | 61.12 ± 3.47 i,j | 61.14 ± 1.66 g–i | 58.33 ± 1.25 i,j | 58.01 ± 1.45 g–i | 57.93 ± 1.05 e–g | 57.54 ± 1.25 c,d | |
L | 63.67 ± 3.15 d–g | 63.09 ± 2.89 d–f | 60.84 ± 1.78 f,g | 58.36 ± 1.96 f–h | 58.26 ± 1.36 b–d | 57.87 ± 1.36 c | ||
M | 66.06 ± 2.56 b,c | 65.42 ± 3.78 b,c | 62.81 ± 2.12 c,d | 59.69 ± 1.28 b–e | 59.59 ± 1.24 b,c | 59.20 ± 1.05 b,c | ||
H | 67.19 ± 2.15 b | 66.42 ± 3.19 b | 63.76 ± 2.58 bc | 60.03 ± 2.98 b–d | 59.93 ± 1.89 b,c | 59.54 ± 1.78 b,c |
Forest Type | Litter Treatment | N & P | C:N Ratio | |||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | |||
KPP | CK | C | 22.65 ± 0.78 c–e | 22.62 ± 0.89 d–f | 21.95 ± 1.03 d–f | 24.50 ± 1.15 b | 22.86 ± 0.89 b,c | 23.77 ± 1.05 b–d |
L | 21.01 ± 0.88 h–k | 20.96 ± 0.99 g | 20.39 ± 0.86 i–k | 21.72 ± 2.12 d–h | 19.90 ± 0.69 j,k | 20.57 ± 0.59 l,m | ||
M | 19.52 ± 0.69 l | 19.47 ± 0.46 h | 18.98 ± 1.36 m | 19.78 ± 1.89 m | 18.33 ± 0.78 l | 18.86 ± 0.69 n | ||
H | 20.30 ± 0.71 j–l | 20.25 ± 0.89 g,h | 19.71 ± 1.89 k–m | 21.07 ± 2.36 h–k | 20.36 ± 0.99 i–k | 21.01 ± 1.89 k–m | ||
RL | C | 26.91 ± 1.25 a | 26.91 ± 1.26 a | 26.22 ± 1.36 a | 21.14 ± 2.15 g–k | 21.97 ± 1.02 d–f | 22.80 ± 2.15 e–g | |
L | 22.16 ± 1.03 d–g | 22.12 ± 1.63 f | 21.51 ± 1.89 f,g | 21.19 ± 2.36 g–k | 21.41 ± 1.36 f–h | 22.18 ± 1.39 g–i | ||
M | 20.32 ± 0.89 j–l | 20.27 ± 1.89 g,h | 19.75 ± 0.49 k–m | 20.58 ± 0.89 k,l | 19.68 ± 0.78 k | 20.29 ± 1.66 m | ||
H | 23.10 ± 1.03 b–d | 23.06 ± 1.36 d,e | 22.44 ± 1.20 c–f | 22.08 ± 2.15 d–f | 22.65 ± 1.36 b–d | 23.47 ± 1.28 c–e | ||
AL | C | 23.42 ± 1.05 b,c | 23.39 ± 1.78 c,d | 22.72 ± 1.36 c,d | 24.66 ± 2.36 b | 23.36 ± 1.88 b | 24.27 ± 1.96 b,c | |
L | 21.00 ± 0.76 h–k | 20.95 ± 1.36 g | 20.40 ± 0.89 i–k | 20.83 ± 2.14 j,k | 20.60 ± 1.98 h–j | 21.28 ± 1.78 j–l | ||
M | 20.31 ± 0.69 j–l | 20.27 ± 1.09 g | 19.75 ± 1.36 k–m | 19.90 ± 1.89 l,m | 19.69 ± 1.24 k | 20.29 ± 0.69 m | ||
H | 20.63 ± 0.78 i–l | 20.58 ± 0.89 g | 20.06 ± 0.78 j–l | 20.56 ± 0.89 k,l | 20.34 ± 1.35 i–k | 20.97 ± 0.89 k–m | ||
NKPF | CK | C | 25.94 ± 1.63 | 25.93 ± 2.10 b | 24.89 ± 0.69 b | 26.42 ± 2.69 a | 26.04 ± 2.15 a | 27.24 ± 3.16 a |
L | 24.08 ± 1.21 b | 24.05 ± 2.12 c | 23.11 ± 2.36 c | 24.52 ± 2.15 b | 23.48 ± 2.96 b | 24.48 ± 2.91 b | ||
M | 23.42 ± 1.20 b,c | 23.39 ± 2.00 c,d | 22.53 ± 2.01 c,d | 23.21 ± 1.25 c | 22.32 ± 2.46 c–e | 23.16 ± 2.96 d–f | ||
H | 22.47 ± 1.08 b,c | 22.43 ± 0.96 e,f | 21.64 ± 1.36 e–g | 22.44 ± 2.36 d | 21.63 ± 2.96 e–g | 22.39 ± 3.88 f–h | ||
RL | C | 22.14 ± 1.36 d–g | 22.10 ± 0.78 f | 21.30 ± 1.45 f–h | 22.09 ± 2.15 d–f | 21.27 ± 2.16 f–h | 22.03 ± 2.19 g–j | |
L | 20.94 ± 0.89 h–k | 20.89 ± 0.94 g | 20.11 ± 1.25 j–l | 21.67 ± 1.69 e–i | 20.88 ± 0.89 g–i | 21.61 ± 1.36 h–k | ||
M | 20.22 ± 1.15 j–l | 20.17 ± 1.36 g,h | 19.46 ± 0.99 l,m | 20.71 ± 0.56 j,k | 20.01 ± 2.15 j,k | 20.65 ± 0.77 l,m | ||
H | 22.30 ± 1.05 d–f | 22.26 ± 1.15 e,f | 21.14 ± 1.82 f–i | 22.39 ± 1.25 d,e | 21.59 ± 2.78 e–g | 22.33 ± 1.56 f–h | ||
AL | C | 22.56 ± 1.36 c–e | 22.52 ± 0.89 e,f | 21.33 ± 1.26 f–h | 23.21 ± 1.36 c | 22.33 ± 2.63 c–e | 23.16 ± 0.96 d–f | |
L | 21.70 ± 1.24 e–h | 21.66 ± 1.22 g,h | 20.56 ± 1.96 h–j | 21.35 ± 1.23 f–j | 20.85 ± 0.88 g–i | 21.56 ± 0.52 h–k | ||
M | 22.76 ± 1.20 c–e | 22.72 ± 1.59 d–f | 21.60 ± 1.25 f,g | 21.84 ± 1.12 d–g | 21.59 ± 2.45 e–g | 22.33 ± 0.69 f–h | ||
H | 22.09 ± 1.05 d–g | 22.05 ± 1.23 f | 20.98 ± 1.36 g–i | 20.94 ± 0.78 i–k | 20.71 ± 0.78 h–j | 21.38 ± 0.78 i–l |
Forest | Litter | N & P | Percent Increase/Decrease | |||
---|---|---|---|---|---|---|
SOC | C:N | STN | STP | |||
KPP | CK | C | −5.14 | −4.91 | −9.58 | −12.23 |
L | −10.48 | 2.07 | −8.59 | −10.90 | ||
M | −10.68 | 3.38 | −7.55 | −8.63 | ||
H | −4.89 | −3.51 | −8.12 | −9.93 | ||
RL | C | −23.11 | 15.29 | −9.22 | −11.92 | |
L | −8.76 | −0.10 | −8.85 | −11.28 | ||
M | −7.97 | 0.11 | −7.86 | −9.88 | ||
H | −7.41 | −1.63 | −8.9 | −8.99 | ||
AL | C | −6.15 | −3.65 | −9.46 | −11.56 | |
L | −7.08 | −1.33 | −8.30 | −9.49 | ||
M | −7.89 | +0.11 | −7.78 | −8.51 | ||
H | −6.25 | −1.65 | −7.78 | −9.53 | ||
NKPF | CK | C | −6.36 | −5.01 | −10.83 | −11.59 |
L | −8.69 | −1.64 | −10.17 | −9.04 | ||
M | −10.25 | 1.09 | −9.26 | −8.59 | ||
H | −9.01 | 0.33 | −8.70 | −10.09 | ||
RL | C | −9.34 | 0.49 | −8.9 | −14.56 | |
L | −5.80 | −3.22 | −8.74 | −12.23 | ||
M | −6.05 | −2.15 | −8.03 | −10.59 | ||
H | −8.44 | −0.15 | −8.59 | −9.17 | ||
AL | C | −6.69 | −2.66 | −9.11 | −13.92 | |
L | −9.10 | 0.66 | −8.49 | −11.49 | ||
M | −10.29 | 1.86 | −8.59 | −8.91 | ||
H | −11.13 | 3.18 | −8.21 | −8.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Jamil, M.A.; Abid, K.; Duan, W.; Chen, L.; Li, C. Effects of Fertilizers and Litter Treatment on Soil Nutrients in Korean Pine Plantation and its Natural Forest of Northeast China. Forests 2022, 13, 1560. https://doi.org/10.3390/f13101560
Hussain A, Jamil MA, Abid K, Duan W, Chen L, Li C. Effects of Fertilizers and Litter Treatment on Soil Nutrients in Korean Pine Plantation and its Natural Forest of Northeast China. Forests. 2022; 13(10):1560. https://doi.org/10.3390/f13101560
Chicago/Turabian StyleHussain, Anwaar, Muhammad Atif Jamil, Kulsoom Abid, Wenbiao Duan, Lixin Chen, and Changzhun Li. 2022. "Effects of Fertilizers and Litter Treatment on Soil Nutrients in Korean Pine Plantation and its Natural Forest of Northeast China" Forests 13, no. 10: 1560. https://doi.org/10.3390/f13101560
APA StyleHussain, A., Jamil, M. A., Abid, K., Duan, W., Chen, L., & Li, C. (2022). Effects of Fertilizers and Litter Treatment on Soil Nutrients in Korean Pine Plantation and its Natural Forest of Northeast China. Forests, 13(10), 1560. https://doi.org/10.3390/f13101560