The Impacts of Post-Fire Straw Mulching and Salvage Logging on Soil Properties and Plant Diversity in a Mediterranean Burned Pine Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Soil Sampling and Physico-Chemical Analysis
2.4. Analysis of Plant Diversity
- The number of species (S), which measures the floristic richness, is the sum of the number of plant species that were recorded on the sampling lines in each plot, and the number of species that were detected by the floristic inventory in the whole plot, but did not intercept the transects;
- The Shannon Index [65], which is related to the relative abundance of the different species in each plot (measured as interception length in cm, using one cm as minimum interception value).
- The Pielou index [66], which is an index of species evenness, which indicates how the number of each species is close in a given environment.
2.5. Statistical Analysis
3. Results
3.1. Soil Respiration
3.2. Soil Physico-Chemical Properties
3.3. Plant Diversity
3.4. Data Processing with PERMANOVA Techniques
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Mallinis, G. A Cloud-Based Mapping Approach for Assessing Spatiotemporal Changes in Erosion Dynamics Due to Biotic and Abiotic Disturbances in a Mediterranean Peri-Urban Forest. Catena 2022, 218, 106564. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Santín, C.; Martínez-Vilalta, J.; Doerr, S.H. A Global Synthesis of Fire Effects on Ecosystem Services of Forests and Woodlands. Front. Ecol. Environ. 2022, 20, 170–178. [Google Scholar] [CrossRef]
- Zema, D.A.; Nunes, J.P.; Lucas-Borja, M.E. Improvement of Seasonal Runoff and Soil Loss Predictions by the MMF (Morgan-Morgan-Finney) Model after Wildfire and Soil Treatment in Mediterranean Forest Ecosystems. Catena 2020, 188, 104415. [Google Scholar] [CrossRef]
- Zema, D.A.; Lucas-Borja, M.E.; Fotia, L.; Rosaci, D.; Sarnè, G.M.; Zimbone, S.M. Predicting the Hydrological Response of a Forest after Wildfire and Soil Treatments Using an Artificial Neural Network. Comput. Electron. Agric. 2020, 170, 105280. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current Research Issues Related to Post-Wildfire Runoff and Erosion Processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Zavala, L.M.M.; de Celis Silvia, R.; López, A.J. How Wildfires Affect Soil Properties. A Brief Review. Cuad. De Investig. Geográfica/Geogr. Res. Lett. 2014, 40, 311–331. [Google Scholar] [CrossRef]
- Zema, D.A. Postfire Management Impacts on Soil Hydrology. Curr. Opin. Environ. Sci. Health 2021, 21, 100252. [Google Scholar] [CrossRef]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; González-Romero, J.; Plaza-Álvarez, P.A.; Sagra, J.; Gómez, M.E.; Moya, D.; Cerdà, A.; de las Heras, J. The Impact of Straw Mulching and Salvage Logging on Post-Fire Runoff and Soil Erosion Generation under Mediterranean Climate Conditions. Sci. Total Environ. 2019, 654, 441–451. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; De Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A Review of Runoff Generation and Soil Erosion across Scales in Semiarid South-Eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Diodato, N.; Bellocchi, G. MedREM, a Rainfall Erosivity Model for the Mediterranean Region. J. Hydrol. 2010, 387, 119–127. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Wildfire effects on soil erosion dynamics: The case of 2021 megafires in greece. Agric. For./Poljopr. I Sumar. 2022, 68, 49–63. [Google Scholar]
- Silvestro, R.; Saulino, L.; Cavallo, C.; Allevato, E.; Pindozzi, S.; Cervelli, E.; Conti, P.; Mazzoleni, S.; Saracino, A. The Footprint of Wildfires on Mediterranean Forest Ecosystem Services in Vesuvius National Park. Fire 2021, 4, 95. [Google Scholar] [CrossRef]
- Ice, G.G.; Neary, D.G.; Adams, P.W. Effects of Wildfire on Soils and Watershed Processes. J. For. 2004, 102, 16–20. [Google Scholar]
- Leverkus, A.B.; Rey Benayas, J.M.; Castro, J.; Boucher, D.; Brewer, S.; Collins, B.M.; Donato, D.; Fraver, S.; Kishchuk, B.E.; Lee, E.-J. Salvage Logging Effects on Regulating and Supporting Ecosystem Services—A Systematic Map. Can. J. For. Res. 2018, 48, 983–1000. [Google Scholar] [CrossRef]
- Moya, D.; Sagra, J.; Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; González-Romero, J.; De Las Heras, J.; Ferrandis, P. Post-Fire Recovery of Vegetation and Diversity Patterns in Semiarid Pinus Halepensis Mill. Habitats after Salvage Logging. Forests 2020, 11, 1345. [Google Scholar] [CrossRef]
- Thorn, S.; Bässler, C.; Brandl, R.; Burton, P.J.; Cahall, R.; Campbell, J.L.; Castro, J.; Choi, C.-Y.; Cobb, T.; Donato, D.C. Impacts of Salvage Logging on Biodiversity: A Meta-analysis. J. Appl. Ecol. 2018, 55, 279–289. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Karr, J.R.; Schoennagel, T.; Perry, D.; Noss, R.F.; Lindenmayer, D.; Beschta, R.; Hutto, R.L.; Swanson, M.E.; Evans, J. Post-Fire Logging Debate Ignores Many Issues. Science 2006, 314, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Wagenbrenner, J.W.; MacDonald, L.H.; Coats, R.N.; Robichaud, P.R.; Brown, R.E. Effects of Post-Fire Salvage Logging and a Skid Trail Treatment on Ground Cover, Soils, and Sediment Production in the Interior Western United States. For. Ecol. Manag. 2015, 335, 176–193. [Google Scholar] [CrossRef]
- Boucher, D.; Gauthier, S.; Noël, J.; Greene, D.F.; Bergeron, Y. Salvage Logging Affects Early Post-Fire Tree Composition in Canadian Boreal Forest. For. Ecol. Manag. 2014, 325, 118–127. [Google Scholar] [CrossRef]
- Knapp, E.E.; Ritchie, M.W. Response of Understory Vegetation to Salvage Logging Following a High-severity Wildfire. Ecosphere 2016, 7, e01550. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Ortega, R.; Miralles, I.; González-Romero, J.; Sagra, J.; Moya, D.; Zema, D.A.; de las Heras, J. Short-Term Changes in Soil Functionality after Wildfire and Straw Mulching in a Pinus Halepensis M. Forest. For. Ecol. Manag. 2020, 457, 117700. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E. Efficiency of Postfire Hillslope Management Strategies: Gaps of Knowledge. Curr. Opin. Environ. Sci. Health 2021, 21, 100247. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Ashmun, L.E.; Sims, B.D. Post-Fire Treatment Effectiveness for Hillslope Stabilization; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2010; RMRS-GTR-240.
- Fernández, C.; Vega, J.A. Efficacy of Bark Strands and Straw Mulching after Wildfire in NW Spain: Effects on Erosion Control and Vegetation Recovery. Ecol. Eng. 2014, 63, 50–57. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching Practices for Reducing Soil Water Erosion: A Review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Smets, T.; Poesen, J.; Knapen, A. Spatial Scale Effects on the Effectiveness of Organic Mulches in Reducing Soil Erosion by Water. Earth-Sci. Rev. 2008, 89, 1–12. [Google Scholar] [CrossRef]
- Carrà, B.G.; Bombino, G.; Lucas-Borja, M.E.; Plaza-Alvarez, P.A.; D’Agostino, D.; Zema, D.A. Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests: Effects on Surface Runoff and Erosion. Ecol. Eng. 2022, 176, 106537. [Google Scholar] [CrossRef]
- Carrà, B.G.; Bombino, G.; Denisi, P.; Plaza-Àlvarez, P.A.; Lucas-Borja, M.E.; Zema, D.A. Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests. Hydrology 2021, 8, 95. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface Runoff and Erosion after Prescribed Burning and the Effect of Different Fire Regimes in Forests and Shrublands: A Review. Int. J. Wildland Fire 2012, 21, 857–872. [Google Scholar] [CrossRef]
- Prats, S.A.; Wagenbrenner, J.W.; Martins, M.A.S.; Malvar, M.C.; Keizer, J.J. Hydrologic Implications of Post-Fire Mulching Across Different Spatial Scales. Land Degrad. Develop. 2016, 27, 1440–1452. [Google Scholar] [CrossRef]
- Prats, S.A.; MacDonald, L.H.; Monteiro, M.; Ferreira, A.J.D.; Coelho, C.O.A.; Keizer, J.J. Effectiveness of Forest Residue Mulching in Reducing Post-Fire Runoff and Erosion in a Pine and a Eucalypt Plantation in North-Central Portugal. Geoderma 2012, 191, 115–124. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Wagenbrenner, J.W.; Ashmun, L.E.; Brown, R.E. Post-Fire Mulching for Runoff and Erosion Mitigation: Part I: Effectiveness at Reducing Hillslope Erosion Rates. Catena 2013, 105, 75–92. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Wagenbrenner, J.W.; Lewis, S.A.; Ashmun, L.E.; Brown, R.E.; Wohlgemuth, P.M. Post-Fire Mulching for Runoff and Erosion Mitigation Part II: Effectiveness in Reducing Runoff and Sediment Yields from Small Catchments. Catena 2013, 105, 93–111. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Serpa, D.; Nunes, J.P.C.; Prats, S.A.; Neves, R.; Keizer, J.J. Predicting the Effectiveness of Different Mulching Techniques in Reducing Post-Fire Runoff and Erosion at Plot Scale with the RUSLE, MMF and PESERA Models. Environ. Res. 2018, 165, 365–378. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Short-Term Changes in Infiltration between Straw Mulched and Non-Mulched Soils after Wildfire in Mediterranean Forest Ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef]
- Fernández-Fernández, M.; Vieites-Blanco, C.; Gómez-Rey, M.X.; González-Prieto, S.J. Straw Mulching Is Not Always a Useful Post-Fire Stabilization Technique for Reducing Soil Erosion. Geoderma 2016, 284, 122–131. [Google Scholar] [CrossRef]
- Badía, D.; Sánchez, C.; Aznar, J.M.; Martí, C. Post-Fire Hillslope Log Debris Dams for Runoff and Erosion Mitigation in the Semiarid Ebro Basin. Geoderma 2015, 237, 298–307. [Google Scholar] [CrossRef]
- Girona-García, A.; Vieira, D.C.S.; Silva, J.; Fernández, C.; Robichaud, P.R.; Keizer, J.J. Effectiveness of Post-Fire Soil Erosion Mitigation Treatments: A Systematic Review and Meta-Analysis. Earth-Sci. Rev. 2021, 217, 103611. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Fernández, C.; Soria, R.; Miralles, I.; Santana, V.M.; Pérez-Romero, J.; Del Campo, A.D.; Delgado-Baquerizo, M. Limited Contribution of Post-Fire Eco-Engineering Techniques to Support Post-Fire Plant Diversity. Sci. Total Environ. 2022, 815, 152894. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Borja, M.E.; Ortega, R.; Miralles, I.; Plaza-Álvarez, P.A.; González-Romero, J.; Peña-Molina, E.; Moya, D.; Zema, D.A.; Wagenbrenner, J.W.; De las Heras, J. Effects of Wildfire and Logging on Soil Functionality in the Short-Term in Pinus Halepensis M. Forests. Eur. J. For. Res. 2020, 139, 935–945. [Google Scholar] [CrossRef]
- Burgess, D.; Wetzel, S. Nutrient Availability and Regeneration Response after Partial Cutting and Site Preparation in Eastern White Pine. For. Ecol. Manag. 2000, 138, 249–261. [Google Scholar] [CrossRef]
- Fterich, A.; Mahdhi, M.; Mars, M. The Effects of Acacia Tortilis Subsp. Raddiana, Soil Texture and Soil Depth on Soil Microbial and Biochemical Characteristics in Arid Zones of Tunisia. Land Degrad. Dev. 2014, 25, 143–152. [Google Scholar] [CrossRef]
- Hedo, J.; Lucas-Borja, M.E.; Wic, C.; Andrés-Abellán, M.; de Las Heras, J. Soil Microbiological Properties and Enzymatic Activities of Long-Term Post-Fire Recovery in Dry and Semiarid Aleppo Pine (Pinus Halepensis M.) Forest Stands. Solid Earth 2015, 6, 243–252. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Candel, D.; Jindo, K.; Moreno, J.L.; Andrés, M.; Bastida, F. Soil Microbial Community Structure and Activity in Monospecific and Mixed Forest Stands, under Mediterranean Humid Conditions. Plant Soil 2012, 354, 359–370. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Z.; Huang, G.; Chen, D.; Zhang, W.; Shao, Y.; Wan, S.; Fu, S. Response of Soil Respiration and Ecosystem Carbon Budget to Vegetation Removal in Eucalyptus Plantations with Contrasting Ages. Sci. Rep. 2014, 4, 6262. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Lewandrowski, W.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil Respiration Dynamics in Fire Affected Semi-Arid Ecosystems: Effects of Vegetation Type and Environmental Factors. Sci. Total Environ. 2016, 572, 1385–1394. [Google Scholar] [CrossRef]
- Oyonarte, C.; Rey, A.; Raimundo, J.; Miralles, I.; Escribano, P. The Use of Soil Respiration as an Ecological Indicator in Arid Ecosystems of the SE of Spain: Spatial Variability and Controlling Factors. Ecol. Indic. 2012, 14, 40–49. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Oyonarte, C.; Were, A.; Escribano, P.; Raimundo, J. Impact of Land Degradation on Soil Respiration in a Steppe (Stipa Tenacissima L.) Semi-Arid Ecosystem in the SE of Spain. Soil Biol. Biochem. 2011, 43, 393–403. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; González-Romero, J.; Miralles, I.; Sagra, J.; Molina-Peña, E.; Moya, D.; De las Heras, J.; Fernández, C. Post-Wildfire Straw Mulching and Salvage Logging Affects Initial Pine Seedling Density and Growth in Two Mediterranean Contrasting Climatic Areas in Spain. For. Ecol. Manag. 2020, 474, 118363. [Google Scholar] [CrossRef]
- Wright, M.; Rocca, M. Do Post-Fire Mulching Treatments Affect Regeneration in Serotinous Lodgepole Pine? Fire Ecol. 2017, 13, 139–145. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Nachtergaele, F. Soil Taxonomy—A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Geoderma 2001, 99, 336–337. [Google Scholar] [CrossRef]
- Peinado, M.; Monje, L.; Martínez Parras, J.M. El Paisaje Vegetal de Castilla-La Mancha. In Manual de Geobotánica; Editorial Cuarto Centenario: Toledo, Spain, 2008; 612p. [Google Scholar]
- Vega, J.A.; Fernandez, C.; Fonturbel, T.; Gonzalez-Prieto, S.; Jimenez, E. Testing the Effects of Straw Mulching and Herb Seeding on Soil Erosion after Fire in a Gorse Shrubland. Geoderma 2014, 223, 79–87. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An Economic, Perception and Biophysical Approach to the Use of Oat Straw as Mulch in Mediterranean Rainfed Agriculture Land. Ecol. Eng. 2017, 108, 162–171. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A. Modelling the Effect of Soil Burn Severity on Soil Erosion at Hillslope Scale in the First Year Following Wildfire in NW Spain. Earth Surf. Process. Landf. 2016, 41, 928–935. [Google Scholar] [CrossRef]
- Vega, J.A.; Fontúrbel, T.; Merino, A.; Fernández, C.; Ferreiro, A.; Jiménez, E. Testing the Ability of Visual Indicators of Soil Burn Severity to Reflect Changes in Soil Chemical and Microbial Properties in Pine Forests and Shrubland. Plant Soil 2013, 369, 73–91. [Google Scholar] [CrossRef]
- Guitian Ojea, F.; Carballas, T. Técnicas de Análisis de Suelos; Pico Sacro: Santiago de Compostela, Spain, 1976; 288p. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; Volume 2, pp. 594–624. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication Bell. Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Pielou, E.C. The Measurement of Diversity in Different Types of Biological Collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance. Dep. Stat. Univ. Auckl. Auckl. 2005, 26, 32–46. [Google Scholar]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Prats, S.A.; dos Santos Martins, M.A.; Malvar, M.C.; Ben-Hur, M.; Keizer, J.J. Polyacrylamide Application versus Forest Residue Mulching for Reducing Post-Fire Runoff and Soil Erosion. Sci. Total Environ. 2014, 468, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, P.R.; Jordan, P.; Lewis, S.A.; Ashmun, L.E.; Covert, S.A.; Brown, R.E. Evaluating the Effectiveness of Wood Shred and Agricultural Straw Mulches as a Treatment to Reduce Post-Wildfire Hillslope Erosion in Southern British Columbia, Canada. Geomorphology 2013, 197, 21–33. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of Mulching on Soil Physical Properties and Runoff under Semi-Arid Conditions in Southern Spain. Catena 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Janssens, I.A.; Carrara, A.; Ceulemans, R. Annual Q10 of Soil Respiration Reflects Plant Phenological Patterns as Well as Temperature Sensitivity. Glob. Change Biol. 2004, 10, 161–169. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X. Soil Respiration and the Environment; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 0-08-046397-5. [Google Scholar]
- Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M. Spatial Models for Monitoring the Spatio-Temporal Evolution of Ashes after Fire–a Case Study of a Burnt Grassland in Lithuania. Solid Earth 2013, 4, 153–165. [Google Scholar] [CrossRef]
- Irvine, J.; Law, B.E.; Hibbard, K.A. Postfire Carbon Pools and Fluxes in Semiarid Ponderosa Pine in Central Oregon. Glob. Change Biol. 2007, 13, 1748–1760. [Google Scholar] [CrossRef]
- Smith, D.R.; Kaduk, J.D.; Balzter, H.; Wooster, M.J.; Mottram, G.N.; Hartley, G.; Lynham, T.J.; Studens, J.; Curry, J.; Stocks, B.J. Soil Surface CO 2 Flux Increases with Successional Time in a Fire Scar Chronosequence of Canadian Boreal Jack Pine Forest. Biogeosciences 2010, 7, 1375–1381. [Google Scholar] [CrossRef]
- Hicke, J.A.; Asner, G.P.; Kasischke, E.S.; French, N.H.; Randerson, J.T.; James Collatz, G.; Stocks, B.J.; Tucker, C.J.; Los, S.O.; Field, C.B. Postfire Response of North American Boreal Forest Net Primary Productivity Analyzed with Satellite Observations. Glob. Change Biol. 2003, 9, 1145–1157. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire Effects on Soil Aggregation: A Review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-Fire Soil Management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Carra, B.G.; Bombino, G.; Lucas-Borja, M.E.; Muscolo, A.; Romeo, F.; Zema, D.A. Short-Term Changes in Soil Properties after Prescribed Fire and Mulching with Fern in Mediterranean Forests. J. For. Res. 2022, 33, 1271–1289. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A Review of the Effects of Forest Fire on Soil Properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Rodriguez-Cardona, B.M.; Coble, A.A.; Wymore, A.S.; Kolosov, R.; Podgorski, D.C.; Zito, P.; Spencer, R.G.M.; Prokushkin, A.S.; McDowell, W.H. Wildfires Lead to Decreased Carbon and Increased Nitrogen Concentrations in Upland Arctic Streams. Sci. Rep. 2020, 10, 8722. [Google Scholar] [CrossRef]
- Alcañiz, M.; Úbeda, X.; Cerdà, A. A 13-Year Approach to Understand the Effect of Prescribed Fires and Livestock Grazing on Soil Chemical Properties in Tivissa, NE Iberian Peninsula. Forests 2020, 11, 1013. [Google Scholar] [CrossRef]
- Soto, B.; Diaz-Fierros, F. Interactions Between Plant Ash Leachates and Soil. Int. J. Wildland Fire 1993, 3, 207–216. [Google Scholar] [CrossRef]
- Úbeda, X.; Lorca, M.; Outeiro, L.R.; Bernia, S.; Castellnou, M.; Úbeda, X.; Lorca, M.; Outeiro, L.R.; Bernia, S.; Castellnou, M. Effects of Prescribed Fire on Soil Quality in Mediterranean Grassland (Prades Mountains, North-East Spain). Int. J. Wildland Fire 2005, 14, 379–384. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of Prescribed Fires on Soil Properties: A Review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Caon, L.; Vallejo, V.R.; Ritsema, C.J.; Geissen, V. Effects of Wildfire on Soil Nutrients in Mediterranean Ecosystems. Earth-Sci. Rev. 2014, 139, 47–58. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.A.; Bowles, M.L. Two Decades of Low-Severity Prescribed Fire Increases Soil Nutrient Availability in a Midwestern, USA Oak (Quercus) Forest. Geoderma 2012, 183, 80–91. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Hedo, J.; Cerdá, A.; Candel-Pérez, D.; Viñegla, B. Unravelling the Importance of Forest Age Stand and Forest Structure Driving Microbiological Soil Properties, Enzymatic Activities and Soil Nutrients Content in Mediterranean Spanish Black Pine (Pinus Nigra Ar. Ssp. Salzmannii) Forest. Sci. Total Environ. 2016, 562, 145–154. [Google Scholar] [CrossRef]
- Rodríguez, J.; González-Pérez, J.A.; Turmero, A.; Hernández, M.; Ball, A.S.; González-Vila, F.J.; Arias, M.E. Wildfire Effects on the Microbial Activity and Diversity in a Mediterranean Forest Soil. Catena 2017, 158, 82–88. [Google Scholar] [CrossRef]
- Jiménez-González, M.A.; De la Rosa, J.M.; Jiménez-Morillo, N.T.; Almendros, G.; González-Pérez, J.A.; Knicker, H. Post-Fire Recovery of Soil Organic Matter in a Cambisol from Typical Mediterranean Forest in Southwestern Spain. Sci. Total Environ. 2016, 572, 1414–1421. [Google Scholar] [CrossRef]
- Morgan, P.; Moy, M.; Droske, C.A.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Hudak, A.T.; Williams, C.J. Vegetation Response to Burn Severity, Native Grass Seeding, and Salvage Logging. Fire Ecol. 2015, 11, 31–58. [Google Scholar] [CrossRef]
- Jonas, J.L.; Berryman, E.; Wolk, B.; Morgan, P.; Robichaud, P.R. Post-Fire Wood Mulch for Reducing Erosion Potential Increases Tree Seedlings with Few Impacts on Understory Plants and Soil Nitrogen. For. Ecol. Manag. 2019, 453, 117567. [Google Scholar] [CrossRef]
- Moya, D.; Peña, E.; Hernández, A.F.; González-Camuñas, H.; Calderón, D.; Plaza-Álvarez, P.A.; González-Romero, J.; Lucas-Borja, M.E.; De las Heras, J. Eficacia y efectos de herramientas de prevención de incendios en ecosistemas forestales de la Sierra de Segura. Sabuco 2021, 15, 53–68. [Google Scholar] [CrossRef]
Source | Pseudo-F | P(perm) |
---|---|---|
SWC | ||
Soil condition | 8.44 | 0.001 |
Date | 44.2 | 0.001 |
Soil condition × date | 13.5 | 0.001 |
ST | ||
Soil condition | 31.2 | 0.001 |
Date | 785 | 0.001 |
Soil condition × date | 3.27 | 0.002 |
CO2 flux | ||
Soil condition | 13.38 | 0.001 |
Date | 15.93 | 0.001 |
Soil condition × date | 3.36 | 0.005 |
Source | Pseudo-F | P (perm) |
---|---|---|
SaC | ||
Soil condition | 13.1 | 0.001 |
Date | 45.8 | 0.001 |
Soil condition × date | 5.8 | 0.003 |
SiC | ||
Soil condition | 88.0 | 0.001 |
Date | 135 | 0.001 |
Soil condition × date | 5.70 | 0.008 |
ClC | ||
Soil condition | 475 | 0.001 |
Date | 43.2 | 0.001 |
Soil condition × date | 18.8 | 0.001 |
pH | ||
Soil condition | 2.51 | 0.054 |
Date | 0.001 | 0.976 |
Soil condition × date | 1.63 | 0.185 |
OM | ||
Soil condition | 47.6 | 0.001 |
Date | 86.8 | 0.001 |
Soil condition × date | 42.5 | 0.001 |
TN | ||
Soil condition | 69.0 | 0.001 |
Date | 107 | 0.001 |
Soil condition × date | 37.4 | 0.001 |
C/N | ||
Soil condition | 8.86 | 0.001 |
Date | 6.34 | 0.027 |
Soil condition × date | 17.9 | 0.001 |
Soil Parameter | Soil Condition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NM + L | M + L | M + NL | NM + NL | C | NM + L | M + L | M + NL | NM + NL | C | |
November 2016 | September 2017 | |||||||||
SaC (%) | 52.14 ± 0.98 aA | 58.52 ± 0.55 bA | 59.68 ± 1.09 bA | 57.46 ± 0.98 bA | 48.17 ± 1 aA | 51.14 ± 0.08 aA | 51.17 ± 1.12 abB | 52.17 ± 0.59 aB | 50.19 ± 1.73 abB | 48.17 ± 1 bA |
SiC (%) | 32.97 ± 0.30 aA | 31.82 ± 0.99 aA | 31.73 ± 1.09 aA | 32.16 ± 1.59 aA | 19.14 ± 1 bA | 42.01 ± 0.01 aB | 40.73 ± 0.46 bB | 40 ± 2.05 bB | 41.44 ± 1.17 abB | 19.14 ± 1 cA |
ClC (%) | 14.88 ± 0.67 aA | 9.64 ± 0.43 aA | 8.58 ± 0.00 bA | 9.65 ± 0.43 bA | 32.68 ± 0 cA | 6.84 ± 0.09 aB | 8.09 ± 0.75 aA | 7.82 ± 0.59 aA | 8.36 ± 0.69 aA | 32.68 ± 0 bA |
pH | 8.48 ± 0.01 aA | 8.48 ± 0.01 aA | 8.52 ± 0.00 bA | 8.44 ± 0.01 aA | 8.54 ± 0.10 abA | 8.49 ± 0.03 aA | 8.48 ± 0.03 aA | 8.41 ± 0.01 aB | 8.45 ± 0.02 aA | 8.64 ± 0.21 aA |
OM (%) | 4.75 ± 0.06 aA | 19.36 ± 1.79 bA | 10.84 ± 0.86 cA | 18.74 ± 0.96 bA | 2.11 ± 0.08 dA | 7.31 ± 0.23 aB | 6.01 ± 0.45 bB | 9.03 ± 0.15 cA | 6.10 ± 0.30 bB | 2.19 ± 0.16 dA |
TN (%) | 0.22 ± 0.00 aA | 0.55 ± 0.01 bA | 0.4 ± 0.01 cA | 0.51 ± 0.04 bA | 0.09 ± 0.00 dA | 0.25 ± 0.00 aB | 0.23 ± 0.00 bB | 0.32 ± 0.01 cB | 0.24 ± 0.01 abB | 0.09 ± 0.01 dA |
C/N | 12.59 ± 0.13 aA | 20.08 ± 1.22 bA | 15.60 ± 0.61 cA | 21.45 ± 0.60 bA | 14.29 ± 0.36 cA | 17.17 ± 0.49 aB | 15.44 ± 1.09 abB | 16.25 ± 0.76 abA | 14.72 ± 0.65 bB | 13.92 ± 0.73 bA |
Source | Pseudo-F | P (perm) |
---|---|---|
S | ||
Soil condition | 7.475 | 0.002 |
J | ||
Soil condition | 5.077 | 0.004 |
H | ||
Soil condition | 6.3161 | 0.001 |
Variable | Pseudo-F | p | Proportion | Cumulative | AICc |
---|---|---|---|---|---|
+ST | 3.94 | 0.04 | 0.10 | 0.10 | 177 |
+SaC | 7.23 | 0.01 | 0.19 | 0.29 | 174 |
+C/N | 3.61 | 0.05 | 0.10 | 0.39 | 171 |
+OM | 2.57 | 0.10 | 0.05 | 0.44 | 171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, R.; Zema, D.A.; Valiente, N.; Soria, R.; Miralles, I.; Lucas-Borja, M.E. The Impacts of Post-Fire Straw Mulching and Salvage Logging on Soil Properties and Plant Diversity in a Mediterranean Burned Pine Forest. Forests 2022, 13, 1580. https://doi.org/10.3390/f13101580
Ortega R, Zema DA, Valiente N, Soria R, Miralles I, Lucas-Borja ME. The Impacts of Post-Fire Straw Mulching and Salvage Logging on Soil Properties and Plant Diversity in a Mediterranean Burned Pine Forest. Forests. 2022; 13(10):1580. https://doi.org/10.3390/f13101580
Chicago/Turabian StyleOrtega, Raúl, Demetrio Antonio Zema, Nicolas Valiente, Rocio Soria, Isabel Miralles, and Manuel Esteban Lucas-Borja. 2022. "The Impacts of Post-Fire Straw Mulching and Salvage Logging on Soil Properties and Plant Diversity in a Mediterranean Burned Pine Forest" Forests 13, no. 10: 1580. https://doi.org/10.3390/f13101580
APA StyleOrtega, R., Zema, D. A., Valiente, N., Soria, R., Miralles, I., & Lucas-Borja, M. E. (2022). The Impacts of Post-Fire Straw Mulching and Salvage Logging on Soil Properties and Plant Diversity in a Mediterranean Burned Pine Forest. Forests, 13(10), 1580. https://doi.org/10.3390/f13101580