Mexico’s Forest Diversity: Common Tree Species and Proposed Forest-Vegetation Provinces
Abstract
:1. Introduction
- to identify as many collections as possible, given mostly sterile collections, and to discuss identifying species in the field versus by specialists in the national herbarium;
- to define and present (in maps) major forest-vegetation types for Mexico, and subdivide them into “forest-vegetation provinces”;
- to present and analyze the frequency of the collected species;
- to compare species-composition similarity among forest-vegetation provinces;
- to statistically estimate the total species richness of forest-vegetation provinces that include the number of physically undetected species, and determine forest-vegetation provinces with high potential to collect previously uncollected species.
2. Materials and Methods
2.1. Study Area and Field Work
2.2. Species Identifications
2.3. Elaboration of Maps
- Land use and vegetation map, series VI (base year 2014, presented in 2017), of Mexico’s National Institute of Statistics and Geography (INEGI) from https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463598459 (accessed on 17 September 2022);
- Floristic provinces, defined by Rzedowski and Reyna-Trujillo in 1990 [18], from http://www.conabio.gob.mx/informacion/gis/ (Regionalización—Bióticas—Divisiones florísticas), accessed on 17 September 2022;
- Political divisions of Mexico’s states from https://www.inegi.org.mx/temas/mg/ (accessed on 17 September 2022).
2.4. Confidence Intervals for Proportions and Statistical Analyses
2.5. Jaccard and Morisita-Horn Similarity Indices among Provinces for Each Major Forest-Vegetation Types
- the Jaccard similarity index for species richness among N floristic provinces (as on page 84 in [31]);
- the Morisita-Horn similarity index for relative species incidence among N floristic provinces (as on page 84 in [31]); and
- i, m, k: counting indices, where i refers to the counting number of species, m to the compared first floristic province, and k to the compared second floristic province;
- N: the number of floristic provinces in the analyzed forest-vegetation type;
- p: relative abundance of the species in the province (or probability to encounter it); it is calculated as the number of incidences (or detections) of a given species in a given province, as a proportion of the number of incidences of all species in the floristic province; in the present study, the number of incidences corresponds to the number of collection sites where the species was found;
- the total number of species in all N floristic provinces;
- : the average number of species per floristic province: where is the number of species in province k.
2.6. Species Richness Estimation for Forest-Vegetation Provinces
- the estimated number of detected plus undetected species by a specified estimator;
- the iChao2 estimator of the number of species ([36] and pages 22 and 70–71 in [31]); by using not only singletons (species detected in exactly one sampling unit) and doubletons (species detected in exactly two sampling unit), but also tripletons and quadrupletons, it represents an improved lower bound, compared with the Chao2 estimator;
- the Chao2 estimator of the number of species [39];
- the Incidence-based Coverage Estimator [37]; and
- estimated sample coverage for the infrequent species group, defined as see page 69 in [31];
- number of distinct species detected in the sample;
- counting index;
- cut-off point between infrequent and frequent species in the two ICEs, which here was chosen to be 10, meaning that species found on more than 10 sites are considered frequent;
- if then the result is term, otherwise the result is 0;
- number of species that are detected in exactly i sampling units (i = 1, 2, …, T);
- total number of sites;
- number of sampling units that includes at least one infrequent species.
3. Results
3.1. Classification of Mexico’s Forests into Major Forest-Vegetation Types
3.2. Classification of Mexico’s Forests Area into Forest-Vegetation Provinces
3.3. Results of Species Identifications and Collection Effort
3.4. Most Frequently Detected Species
- Pinus leiophylla (Pinaceae) and Juniperus deppeana (Cupressaceae) were most frequently found in coniferous forest, id est, they had the highest share of sites;
- Quercus magnoliifolia (Fagaceae) and Acacia pennatula (Fabaceae) in highland broadleaf forest;
- Liquidambar styraciflua (Altingiaceae) and Pinus pseudostrobus (Pinaceae) in mountainous cloud forest;
- Bursera simaruba (Burseraceae) and Manilkara zapota (Sapotaceae) in lowland evergreen forest;
- Lysiloma divaricatum (Fabaceae) and Guazuma ulmifolia (Malvaceae) in lowland dry forest; and
- Parkinsonia microphylla and Prosopis laevigata (both Fabaceae) in xerophilous scrub.
3.5. Differences among Species Compositions among Forest-Vegetation Provinces
3.6. Estimation of Undetected Species in Each Forest-Vegetation Province
- (1)
- “Mountainous cloud forest—Transisthmus Highlands” with 8.8
- (2)
- “Lowland evergreen forest—Transisthmus Highlands” with 5.6
- (3)
- “Highland broadleaf forest—Transisthmus Highlands” with 5.1
- (4)
- “Lowland evergreen forest—Tehuacán-Cuicatlán Valley” with 3.2
- (5)
- “Xerophilous scrub—Northeastern Coastal Plain” with 3.1
- (1)
- “Mountainous cloud forest—Transisthmus Highlands” with 518 expected additional species;
- (2)
- “Lowland evergreen forest—Gulf of Mexico Coast” with 491 species;
- (3)
- “Coniferous forest—Southern Highlands” with 354 species;
- (4)
- “Lowland evergreen forest—Pacific Coast” with 342 species;
- (5)
- “Lowland evergreen forest—Southern Highlands” with 321 species.
4. Discussion
4.1. Should Herbarium Specimens Be Collected in National Forest Inventories of Species-Rich Countries?
- (a)
- for 40% of the 22,659 herbarium collections, corresponding to 504 of the 1464 species, identification of species names in the field were confirmed in the herbarium;
- (b)
- for 32%, their species identifications were corrected or changed, resulting in 988 species;
- (c)
- 27% of the collections had been sent without identification, resulting in 1118 species;
- (d)
- for 1%, inconsistencies indicated confusion about the involved collections that could not be resolved (for example, a Pinus identification in the field and a Quercus identification in the herbarium).
4.2. Why Do We Propose a New Classification for Mexico’s Species-Rich Forests?
- (a)
- Our classification focuses exclusively on forest vegetation. The extensive xerophilous scrub area is generally included in Mexico’s forest vegetation, because it contains many tree and shrub species, even though it does not everywhere comply with the definition from the Food and Agriculture Organization of the United Nations (FAO) of what constitutes a forest (page 4 in [45]): its height does not necessarily reach more than 5 m at maturity in situ, and its canopy does not necessarily cover more than 10% of the area. The distinction of seven major forest-vegetation types (including mangrove and wetland forest) is relatively robust, being pragmatically focused on what can be seen and classified on the ground. In addition, INEGI’s vegetation classification, from which they are derived, has been updated and revised five times since 1985.
- (b)
- Rzedowski’s floristic provinces have been cited in floristic work, but have not been used to subdivide forest units with different tree-species combinations. The floristic provinces cross through the six major forest-vegetation types, id est, a given floristic province is not restricted to a single forest-vegetation type. This results in new, previously unrecognized areas with supposedly proper characteristics in terms of its forest vegetation. Such units are of interest for ecological and evolutionary analyses, as well as for forest exploitation and conservation.
4.3. How Should Sites Be Distributed Strategically in Future Inventories?
5. Conclusions
- (1)
- We identified 1464 native species (approximately half of Mexico’s estimated total) in 470 genera and 117 plant families; in addition, there were 28 exotic species. Detailed information for each species is provided as Supplementary Material S3. Visual tree-species identification data in the field by the hired crews were compared with much more rigorous identifications of submitted (though mostly sterile) herbarium samples by experienced taxonomists and specialists at Mexico’s National Herbarium (MEXU): 40% of the 22,659 collections, the identification of species names from the field was confirmed, for 32% it was corrected at the herbarium, and 27% had been sent without any identification.
- (2)
- The most frequently collected plant family in all of Mexico was Fagaceae (oak family) with 21.7% of 21,721 collections, without repeating the same species on the same site. The Fagaceae was followed by Fabaceae (legumes, 17.7%), Pinaceae (pine family, 13.3%), Malvaceae (mallow family, 4.5%), Ericaceae (heath family, 4.2%), and Burseraceae (frankincense family, 3.4%).
- (3)
- Based on the classification system of Mexico’s National Institute of Statistics and Geography (INEGI), we defined six major forest-vegetation types: coniferous forest, highland broadleaf forest, mountainous cloud forest, lowland evergreen forest, lowland dry forest, and xerophilous scrub. A seventh one, mangrove and wetland forest, was only marginally analyzed. The most commonly collected tree species were Pinus leiophylla and Juniperus deppeana in coniferous forest, Quercus magnoliifolia and Acacia pennatula in highland broadleaf forest, Liquidambar styraciflua and Pinus pseudostrobus in mountainous cloud forest, Bursera simaruba and Manilkara zapota in lowland evergreen forest, Lysiloma divaricatum and Guazuma ulmifolia in lowland dry forest, as well as Parkinsonia microphylla and Prosopis laevigata in xerophilous scrub. Excluding xerophilous scrub, the inverse collection density was 21 to 49 km2 per collection, depending on the forest type.
- (4)
- By overlapping the six major forest-vegetation types with Rzedowski’s 15 mainland floristic provinces for Mexico, we determined 75 so-called forest-vegetation provinces. For 35 forest-vegetation provinces with at least 20 collection sites, the community Jaccard index and Morisita-Horn indices resulted in a similarity of species composition of only 17–34% and 15–42%, respectively. Statistical estimators of physically undetected (or unseen) species were calculated for 35 forest-vegetation provinces with at least 20 sites, which indicate that there are forest-vegetation provinces, where species estimates could be up to 8.8-fold higher than detected in the present work, and with 518 expected additional species (“Mountainous cloud forest—Transisthmus Highlands”).
- (5)
- Finally, we suggest a method to distribute sites optimally among the country in future forest inventories, such as to minimize the inverse collection density in each forest-vegetation province.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rzedowski, J. Diversity and origins of the phanerogamic flora of Mexico. In Biological Diversity of Mexico: Origins and Distribution; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, J., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 129–144. [Google Scholar]
- Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodiv. 2016, 87, 559–902. [Google Scholar] [CrossRef]
- Standley, P.C. Trees and shrubs of Mexico. Contrib. U. S. Natl. Herb. 1926, 23, 1–1721. [Google Scholar]
- Villaseñor, J.L.; Ibarra-Manríquez, G. La riqueza arbórea de México. Boletín IBUG 1998, 5, 95–105. [Google Scholar]
- Pennington, T.D.; Sarukhán, J. Árboles tropicales de México: Manual para la identificación de las principales especies; Universidad Nacional Autónoma de México & Fondo de Cultura Económica: Ciudad de México, Mexico, 2005. [Google Scholar]
- Ricker, M.; Hernández, H.M. Tree and tree-like species of Mexico: Gymnosperms, monocotyledons, and tree ferns. Rev. Mex. Biodiv. 2010, 81, 27–38. Available online: http://www.ejournal.unam.mx/bio/BIO81-02/BIO081000205.pdf (accessed on 17 September 2022).
- Ricker, M.; Hernández, H.M.; Sousa, M.; Ochoterena, H. Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae. Rev. Mex. Biodiv. 2013, 84, 439–470. [Google Scholar] [CrossRef]
- Ricker, M.; Valencia-Ávalos, S.; Hernández, H.M.; Gómez-Hinostrosa, C.; Martínez-Salas, E.M.; Alvarado-Cárdenas, L.O.; Wallnöfer, B.; Ramos, C.H.; Mendoza, P.E. Tree and tree-like species of Mexico: Apocynaceae, Cactaceae, Ebenaceae, Fagaceae, and Sapotaceae. Rev. Mex. Biodiv. 2016, 87, 1189–1202. [Google Scholar] [CrossRef]
- Steinmann, V.W.; Ricker, M. Tree and tree-like species of Mexico: Euphorbiaceae, Peraceae, Phyllanthaceae, Picrodendraceae, Putranjivaceae, and Urticaceae. Rev. Mex. Biodiv. 2020, 91, e913339. [Google Scholar] [CrossRef]
- Téllez, O.; Mattana, E.; Diazgranados, M.; Kühn, N.; Castillo-Lorenzo, E.; Lira, R.; Montes-Leyva, L.; Rodríguez, I.; Flores Ortiz, C.M.; Way, M.; et al. Native trees of Mexico: Diversity, distribution, uses and conservation. PeerJ 2020, 8, e9898. [Google Scholar] [CrossRef]
- Nelson, B.W.; Ferreira, C.A.; da Silva, M.F.; Kawasaki, M.L. Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 1990, 345, 714–716. [Google Scholar] [CrossRef]
- Caballero-Deloya, M. El inventario forestal en México: Evolución y perspectivas. In North American Science Symposium: Toward a Unified Framework for Inventorying and Monitoring Forest Ecosystem Resources; Aguirre-Bravo, C., Rodríguez-Franco, C., Eds.; Proceedings RMRS-P-12; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1999; pp. 186–189. [Google Scholar]
- CONAFOR. Inventario Nacional Forestal y de Suelos: Informe de resultados 2004–2009; Comisión Nacional Forestal (CONAFOR): Zapopan, Jalisco, Mexico, 2012. Available online: https://old-snigf.cnf.gob.mx/resultados-2004-2009/ (accessed on 17 September 2022).
- CONAFOR. Inventario Nacional Forestal y de Suelos: Informe de resultados 2009–2014; Comisión Nacional Forestal (CONAFOR): Zapopan, Jalisco, Mexico, 2017. Available online: https://old-snigf.cnf.gob.mx/resultados-2009-2014/ (accessed on 17 September 2022).
- Palacio-Prieto, J.L.; Bocco, G.; Velázquez, A.; Mas, J.F.; Takaki-Takaki, F.; Victoria, A.; Luna-González, L.; Gómez-Rodríguez, G.; López-García, J.; Palma, M.; et al. La condición actual de los recursos forestales en México: Resultados del Inventario Forestal Nacional 2000. Boletín del Instituto de Geografía UNAM 2000, 43, 183–203. Available online: http://www.investigacionesgeograficas.unam.mx/index.php/rig/article/view/59131/52118 (accessed on 17 September 2022). [CrossRef]
- Miranda, F.; Hernández, E. Los tipos de vegetación de México y su clasificación. Boletín de la Sociedad Botánica de México 1963, 28, 29–179. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de México; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Ciudad de México, Mexico, 1978; (2006 Online Edition); Available online: https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf (accessed on 17 September 2022).
- Rzedowski, J.; Reyna-Trujillo, T. Tópicos fitogeográficos (provincias, matorral xerófilo y cactáceas), escala 1:8,000,000. In Atlas Nacional de México; Tomo II, Sección IV.8.3; Instituto de Geografía, Universidad Nacional Autónoma de México (UNAM): Ciudad de México, México, 1990; Available online: https://geodigital.igg.unam.mx/atlas_nacional/index.html/grals/Tomo_II/IV.Naturaleza/IV.8.Biogeografia/IV.8.3.jpg (accessed on 17 September 2022).
- Ricker, M. Manual para realizar las colectas botánicas del Inventario Nacional Forestal y de Suelos; Instituto de Biología, Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2019. [Google Scholar] [CrossRef]
- Gutiérrez, G.; Ricker, M. Manual para tomar virutas de madera con el barreno de pressler en el Inventario Nacional Forestal y de Suelos; Instituto de Biología, Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2014. [Google Scholar] [CrossRef]
- Clopper, C.J.; Pearson, E.S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Miller, R.G. Simultaneous Statistical Inference, 2nd ed.; Springer: New York, NY, USA, 1981. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry, 4th ed.; W.H. Freeman and Company: New York, NY, USA, 2012. [Google Scholar]
- Schenker, N.; Gentleman, J.F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 2001, 55, 182–186. [Google Scholar] [CrossRef]
- Jaccard, P. The distribution of the flora in the alpine zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Morisita, M. Iδ-index, a measure of dispersion of individuals. Res. Popul. Ecol. 1962, 4, 1–7. [Google Scholar] [CrossRef]
- Horn, H.S. Measurement of “overlap” in comparative ecological studies. Am. Nat. 1966, 100, 419–424. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L.; Chiang, S.C.; Jiang, Y.H.; Chazdon, R.L. A two-stage probabilistic approach to multiple-community similarity indices. Biometrics 2008, 64, 1178–1186. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Chao, A.; Ma, K.H.; Hsieh, T.C.; Chiu, C.H. User’s Guide for Online Program SpadeR (Species-Richness Prediction and Diversity Estimation in R); Institute of Statistics, National Tsing Hua University: Hsinchu City, Taiwan, 2020; Available online: http://140.114.36.3/wordpress/software_download/softwarespader_online/ (accessed on 17 September 2022).
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 2005, 8, 148–159. [Google Scholar] [CrossRef]
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 2006, 62, 361–371. [Google Scholar] [CrossRef]
- Burnham, K.P.; Overton, W.S. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 1978, 65, 625–633. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. Available online: https://www.jstor.org/stable/4615964 (accessed on 17 September 2022).
- Chiu, C.H.; Chao, A. Distance-based functional diversity measures and their decomposition: A framework based on Hill numbers. PLoS ONE 2014, 9, e100014. [Google Scholar] [CrossRef]
- Lee, S.M.; Chao, A. Estimating population size via sample coverage for closed capture-recapture models. Biometrics 1994, 50, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.Y.; Kleinn, C. Estimation of tree species richness from large area forest inventory data: Evaluation and comparison of jackknife estimators. For. Ecol. Manag. 2008, 255, 1002–1010. [Google Scholar] [CrossRef]
- Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 1987, 43, 783–791. [Google Scholar] [CrossRef]
- INEGI. Guía para la interpretación de cartografía: Uso del Suelo y Vegetación, Escala 1:250,000, Serie VI; Instituto Nacional de Estadística y Geografía (INEGI): Ciudad de Aguascalientes, Mexico, 2017. Available online: https://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825092030.pdf (accessed on 17 September 2022).
- Hoffmann, S.; Hoffmann, A. Is there a “true” diversity? Ecol. Econ. 2008, 65, 213–215. [Google Scholar] [CrossRef]
- Federal Ministry of Food and Agriculture. The Forests in Germany: Selected Results of the Third National Forest Inventory; Bundesministerium für Ernährung und Landwirtschaft (Federal Ministry of Food and Agriculture): Berlin, Germany, 2015. Available online: https://www.bundeswaldinventur.de/en/service/publications/brochures (accessed on 17 September 2022).
- Haeupler, H.; Muer, T. Bildatlas der Farn- und Blütenpflanzen Deutschlands: Alle 4200 Pflanzen in Text und Bild; Verlag Eugen Ulmer KG: Stuttgart, Germany, 2007. [Google Scholar]
- Velázquez, A.; Medina-García, C.; Durán-Medina, E.; Amador, A.; Gopar-Merino, L.F. Standardized Hierarchical Vegetation Classification: Mexican and Global Patterns; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Terms and Definitions; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; Available online: https://www.fao.org/forest-resources-assessment/en/ (accessed on 17 September 2022).
- Cleland, D.T.; Freeouf, J.A.; Keys, J.E.; Nowacki, G.J.; Carpenter, C.A.; McNab, W.H. Ecological Subregions: Sections and Subsections for the Conterminous United States; Map 1:3,500,000, General Technical Report WO-76D; Department of Agriculture, Forest Service: Washington, DC, USA, 2007. [CrossRef]
- McNab, W.H.; Cleland, D.T.; Freeouf, J.A.; Keys, J.E.; Nowacki, G.J.; Carpenter, C.A. (Eds.) Description of Ecological Subregions: Sections of the Conterminous United States; General Technical Report WO-76B; Department of Agriculture, Forest Service: Washington, DC, USA, 2007. [CrossRef]
- Bruelheide, H. Cocktail clustering—A new hierarchical agglomerative algorithm for extracting species groups in vegetation databases. J. Veg. Sci. 2016, 27, 1297–1307. [Google Scholar] [CrossRef]
- Bloomfield, N.J.; Knerr, N.; Encinas-Viso, F. A comparison of network and clustering methods to detect biogeographical regions. Ecography 2018, 41, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ricker, M.; Villela, S.A.; Mondragón, E. Información por conglomerado del Inventario Nacional Forestal y de Suelos (INFyS) de México; Technical Report with Excel Data Base; Instituto de Biología, Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2020. [Google Scholar] [CrossRef]
- Galicia, A. La diversidad arbórea en México: Un análisis con los datos del Inventario Nacional Forestal y de Suelos 2013. Master’s Thesis, Posgrado en Ciencias Biológicas. Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico, 2019. [Google Scholar]
Spanish Name of Forest Inventory | Result |
---|---|
Primer Inventario Nacional Forestal 1961–1985 (24 years) | Maps, volume tables, reports for some states |
Inventario Nacional Forestal de Gran Visión 1991 | Maps with forest vegetation, first report about the situation of forests on a national scale |
Inventario Nacional Forestal Periódico 1992–1994 | Maps with forest vegetation, dasometric statistics |
Inventario Nacional Forestal 2000 | Maps with vegetation types and geographic data, created via remote sensing [15] |
Inventario Nacional Forestal y de Suelos 2004–2009 | Per-tree measurements and collections for analysis on 21,743 sites, id est, subdivided areas of 1600 m2 [13] |
Inventario Nacional Forestal y de Suelos 2009–2014 | Per-tree measurements and collections for analysis on 22,409 sites, id est, subdivided areas of 1600 m2 [14] |
Inventario Nacional Forestal y de Suelos 2015–2020 | Per-tree measurements and collections for analysis on 10,686 sites, id est, subdivided areas of 1600 m2 |
Forest-Vegetation Type | Area (km2) | Relative Area |
---|---|---|
(1) Coniferous forest (bosque de coníferas) | 166,764 | 8.53% |
(2) Highland broadleaf forest (bosque latifoliado de montaña) | 157,064 | 8.04% |
(3) Mountainous cloud forest (bosque mesófilo de montaña) | 18,023 | 0.92% |
(4) Lowland evergreen forest (selva perennifolia) | 98,470 | 5.04% |
(5) Lowland dry forest (selva caducifolia) | 203,888 | 10.43% |
(6) Xerophilous scrub (matorral xerófilo) | 536,713 | 27.46% |
Subtotal: | 1,180,922 | 60.42% |
(7) Mangrove and wetland forests (manglares y bosques de humedales) | 10,135 | 0.52% |
Other surfaces: | 763,601 | 39.07% |
Total: | 1,954,658 | 100% |
Major Forest-Vegetation Type | Area in Mexico (km2) | Relative Area of Mexico | Corresponding Number of Herbarium Collections | Inverse Collection Density (km2/Collection) | Collections on Sites with Secondary Vegetation |
---|---|---|---|---|---|
Coniferous forest | 166,763 | 8.5% | 7089 | 23.5 | 37% |
Highland broadleaf forest | 157,064 | 8.0% | 4917 | 31.9 | 40% |
Mountainous cloud forest | 18,024 | 0.9% | 867 | 20.8 | 58% |
Lowland evergreen forest | 98,470 | 5.0% | 2694 | 36.6 | 67% |
Lowland dry forest | 203,888 | 10.4% | 4192 | 48.6 | 73% |
Xerophilous scrub | 536,713 | 27.5% | 598 | 897.5 | 12% |
Mangrove and wetland forest | 10,135 | 0.5% | 384 | 26.4 | 7% |
Other surfaces | 763,506 | 39.1% | 1924 | 396.8 | - |
Mexico | 1,954,658 | 100% | 22,659 | 86.2 | - |
Family Collections | Number of Genera | Number of Species | Genus Collections | Number of Species | Species Collections |
---|---|---|---|---|---|
Fagaceae (21.7%) | 1 | 105 | Quercus (21.7%) | 105 | Pinus leiophylla (1.78%) |
Fabaceae (17.7%) | 68 | 261 | Pinus (12.9%) | 32 | Quercus magnoliifolia (1.67%) |
Pinaceae (13.3%) | 3 | 39 | Lysiloma (3.8%) | 8 | Juniperus deppeana (1.65%) |
Malvaceae (4.5%) | 22 | 51 | Acacia (3.5%) | 33 | Acacia pennatula (1.58%) |
Ericaceae (4.2%) | 9 | 22 | Arbutus (3.3%) | 6 | Guazuma ulmifolia (1.45%) |
Burseraceae (3.4%) | 2 | 64 | Bursera (3.2%) | 60 | Pinus cembroides (1.43%) |
Cupressaceae (3.1%) | 3 | 18 | Juniperus (2.9%) | 14 | Pinus oocarpa (1.39%) |
Anacardiaceae (2.6%) | 14 | 37 | Guazuma (1.5%) | 1 | Lysiloma divaricatum (1.32%) |
Euphorbiaceae (1.4%) | 21 | 55 | Ipomoea (1.2%) | 5 | Arbutus xalapensis (1.31%) |
Convolvulaceae (1.2%) | 1 | 5 | Cordia (1.0%) | 17 | Lysiloma acapulcense (1.21%) |
Coniferous Forest | Highland Broadleaf Forest | Mountainous Cloud Forest | Lowland Evergreen Forest | Lowland Dry Forest | Xerophilous Scrub | |
---|---|---|---|---|---|---|
Total number of FVPs | 13 | 13 | 12 | 10 | 15 | 12 |
FVPs ≥ 20 sites | 7 | 7 | 4 | 6 | 7 | 4 |
Total number of species in FVPs ≥ 20 sites | 490 | 531 | 292 | 601 | 612 | 113 |
Number of species per FVP ≥ 20 sites: range | 57–306 | 40–239 | 66–133 | 29–285 | 42–347 | 27–49 |
Pairwise Jaccard index: mean (range) | 0.316 (0.147–0.616) | 0.310 (0.152–0.639) | 0.337 (0.275–0.442) | 0.251 (0.069–0.522) | 0.226 (0.054–0.569) | 0.176 (0.077–0.295) |
Jaccard community index (with unseen species) | 0.328 (0.431) | 0.332 (0.450) | 0.336 (0.535) | 0.275 (0.444) | 0.239 (0.321) | 0.171 (0.258) |
Pairwise Morisita-Horn index: mean (range) | 0.348 (0.106–0.742) | 0.335 (0.106–0.730) | 0.432 (0.280–0.534) | 0.322 (0.055–0.797) | 0.243 (0.007–0.757) | 0.157 (0.063–0.285) |
Morisita-Horn community index (with unseen species) | 0.329 (0.348) | 0.313 (0.332) | 0.419 (0.468) | 0.321 (0.354) | 0.208 (0.215) | 0.154 (0.165) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricker, M.; Calónico, J.; Castillo-Santiago, M.Á.; Galicia, A.; Kleinn, C.; Martínez-Salas, E.M.; Mondragón, E.; Mora, M.A.; Ramos, L.J.; Ramos, C.H.; et al. Mexico’s Forest Diversity: Common Tree Species and Proposed Forest-Vegetation Provinces. Forests 2022, 13, 1598. https://doi.org/10.3390/f13101598
Ricker M, Calónico J, Castillo-Santiago MÁ, Galicia A, Kleinn C, Martínez-Salas EM, Mondragón E, Mora MA, Ramos LJ, Ramos CH, et al. Mexico’s Forest Diversity: Common Tree Species and Proposed Forest-Vegetation Provinces. Forests. 2022; 13(10):1598. https://doi.org/10.3390/f13101598
Chicago/Turabian StyleRicker, Martin, Jorge Calónico, Miguel Á. Castillo-Santiago, Adolfo Galicia, Christoph Kleinn, Esteban M. Martínez-Salas, Edith Mondragón, Mauricio A. Mora, Leandro J. Ramos, Clara H. Ramos, and et al. 2022. "Mexico’s Forest Diversity: Common Tree Species and Proposed Forest-Vegetation Provinces" Forests 13, no. 10: 1598. https://doi.org/10.3390/f13101598
APA StyleRicker, M., Calónico, J., Castillo-Santiago, M. Á., Galicia, A., Kleinn, C., Martínez-Salas, E. M., Mondragón, E., Mora, M. A., Ramos, L. J., Ramos, C. H., & Villela, S. A. (2022). Mexico’s Forest Diversity: Common Tree Species and Proposed Forest-Vegetation Provinces. Forests, 13(10), 1598. https://doi.org/10.3390/f13101598