Biodiagnostics of Resistance to the Copper (Cu) Pollution of Forest Soils at the Dry and Humid Subtropics in the Greater Caucasus Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Copper
2.3. Experimental Details
2.3.1. Measurement of the Total Number of Bacteria
2.3.2. Measurement of Azotobacter sp. abundance
2.3.3. Evaluation of Catalase and Dehydrogenases Activity
2.3.4. Evaluation of Cellulolytic Activity
2.3.5. Measurement of Seed Germination Rate and Length of Roots of Radish (Raphanus sativus)
2.4. Data Analysis
2.5. Statistical Analyses
3. Results
3.1. Azotobacter sp. Abundance and the Total Number of Bacteria
3.2. Catalase and Dehydrogenases Activity
3.3. Cellulolytic Activity
3.4. Length of the Roots of Radish (Raphanus sativus)
3.5. Integral Index of the Biological State (IIBS) Ecotoxicity of Copper (Cu)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakhutsrishvili, G.; Zazanashvili, N.; Batsatsashvili, K.; Montalvo Mancheno, C.S. Colchic and Hyrcanian forests of the Caucasus: Similarities, differences and conservation status November 2015. Flora Mediterr. 2015, 25, 185–192. [Google Scholar] [CrossRef]
- Yusuf, Y.; Panagiotis, P.; Luca, M. Soil Resources of Mediterranean and Caucasus Countries. Geography 2013, 134003427. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Gąsiorek, M.; Zadrożny, P.; Nicia, P.; Waroszewski, J. Deep Subsoil Storage of Trace Elements and Pollution Assessment in Mountain Podzols (Tatra Mts., Poland). Forests 2021, 12, 291. [Google Scholar] [CrossRef]
- Sidor, C.G.; Vlad, R.C.; Popa, I.; Semeniuc, A.; Apostol, E.N.; Badea, O. Impact of Industrial Pollution on Radial Growth of Conifers in a Former Mining Area in the Eastern Carpathians (Northern Romania). Forests 2021, 12, 640. [Google Scholar] [CrossRef]
- Huseynov, D. Atlas of Ore Deposits of Azerbaijan; Elm Publishing House: Baku, Azerbaijan, 2018. [Google Scholar]
- Nakhchivan Autonomous Republic. Available online: https://nakhchivan.preslib.az/en_a5.html (accessed on 5 August 2022).
- Bakanov, G.E. The development of the mining industry of the USSR for 40 years. Bull. Tomsk. Polytech. Univ. Geores. Eng. 1959, 103, 11–20. [Google Scholar]
- Salpagarova, S.I.; Salpagarova, Z.I. The Environmental Impacts of Urupsky Mining Complex. Dagestan State Pedagogical University. J. Nat. Exact Sci. 2018, 12, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Antoninova, N.Y.; Sobenin, A.V.; Shubina, L.A. Assessment of usability of industrial waste in construction of geochemical barriers. MIAB. Min. Inf. Anal. Bull. 2020, 12, 78–88. [Google Scholar] [CrossRef]
- Mihaljevič, M.; Baieta, R.; Ettler, V.; Vaněk, A.; Kříbek, B.; Penížek, V.; Drahota, P.; Trubač, J.; Sracek, O.; Chrastný, V.; et al. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes. Chem. Geol. 2019, 515, 61–76. [Google Scholar] [CrossRef]
- Apori, O.S.; Hanyabui, E.; Asiamah, Y.J. Remediation Technology for Copper Contaminated Soil: A Review. Asian Soil Res. J. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Neaman, A.; Reyes, L.; Trolard, F.; Bourrie, G.; Sauve, S. Copper mobility in contaminated soils of the Puchuncavi valley, central Chile. Geoderma 2009, 150, 359–366. [Google Scholar] [CrossRef]
- Weissenstein, K.; Sinkala, T. Soil pollution with heavy metals of gold- and copper mining industries in Southern Africa. Arid Ecosyst. 2011, 17, 47–54. [Google Scholar]
- Antoniadis, V.; Shaheen, S.; Levizou, E.; Shahid, M.; Niazi, N.; Vithanage, M.; Ok, Y.; Bolan, N.; Rinklebe, J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environ. Int. 2019, 127, 819–847. [Google Scholar] [CrossRef] [PubMed]
- Chaplygin, V.; Minkina, T.; Mandzhieva, S.; Burachevskaya, M.; Sushkova, S.; Antonenko, E.; Poluektov, E.; Kumacheva, V. The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants. Environ. Monit. Assess. 2018, 190, 124. [Google Scholar] [CrossRef] [PubMed]
- D’yachenko, V.V.; Matasova, I.Y. Regional clarkes of chemical elements in soils of southern European Russia. Eurasian Soil Sci. 2016, 49, 1091–1098. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC (Taylor & Francis Group): Boca Raton, FL, USA, 2011; p. 548. [Google Scholar]
- Linnik, V.G.; Minkina, T.M.; Bauer, T.V.; Mandzhieva, S.S.; Saveliev, A.A. Geochemical assessment and spatial analysis of heavy metals pollution around coal-fired power station. Environ. Geochem. Health 2020, 42, 4087–4100. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, S.; Timoshenko, A.; Minnikova, T.; Tsepina, N.; Kazeev, K.; Akimenko, Y.; Zhadobin, A.; Shuvaeva, V.; Rajput, V.D.; Mandzhieva, S.; et al. Impact of Metal-Based Nanoparticles on Cambisols Microbial Functionality, Enzyme Activity and Plant Growth. Plants 2021, 10, 2080. [Google Scholar] [CrossRef]
- Gorovtsov, A.V.; Demin, K.; Sushkova, S.N.; Minkina, T.M.; Dudnikova, T.S.; Barbashev, A.I.; Rajput, V.D.; Grigoryeva, T.; Romanova, V.; Laikov, A.; et al. The effect of combined pollution by PAHs and heavy metals on the topsoil microbial communities of spolictechnosols of the lake Atamanskoe, Southern Russia. Environ. Geochem. Health 2022, 44, 1299–1315. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Kazeev, K.S.; Timoshenko, A.N.; Akimenko, Y.V.; Myasnikova, M.A. Ecotoxicity of Copper, Nickel, and Zinc Nanoparticles Assessment on the Basis of Biological Indicators of Chernozems. Eurasian Soil Sci. 2019, 52, 982–987. [Google Scholar] [CrossRef]
- Minnikova, T.V.; Denisova, T.V.; Mandzhieva, S.S.; Kolesnikov, S.I.; Minkina, T.M.; Chaplygin, V.A.; Burachevskaya, M.V.; Sushkova, S.N.; Bauer, T.V. Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. J. Geochem. Explor. 2017, 174, 70–78. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Sushkova, S.; Behal, A.; Maksimov, A.; Blicharska, E.; Ghazaryan, K.; Movsesyan, H.; Barsova, N. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environ. Geochem. Health 2020, 42, 147–158. [Google Scholar] [CrossRef]
- Perelomov, L.; Atroshchenko, Y.; Pinsky, D.; Minkina, T.; Perelomova, I. Trace elements in fluvisols with different anthropogenic load. Int. J. Environ. Res. 2021, 15, 751–758. [Google Scholar] [CrossRef]
- Neaman, A.; Yanez, C. Phytoremediation of Soils Contaminated by Copper Smelting in Chile: Results of a Decade of Research. Eurasian Soil Sci. 2021, 54, 1967–1974. [Google Scholar] [CrossRef]
- Yáñez, C.; Verdejo, J.; Moya, H.; Donoso, P.; Rojas, C.; Dovletyarova, E.A.; Shapoval, O.A.; Krutyakov, Y.A.; Neaman, A. Microbial responses are unreliable indicators of copper ecotoxicity in soils contaminated by mining activities. Chemosphere 2022, 300, 134517. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Tsepina, N.I.; Sudina, L.V.; Minnikova, T.V.; Kazeev, K.S.; Akimenko, Y.V. Silver Ecotoxicity Estimation by the Soil State Biological Indicators. Appl. Environ. Soil Sci. 2020, 2020, 1207210. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, G.; Zhong, H.; Wang, Z.; Liu, Z.; Cheng, M.; Liu, G.; Yang, X.; Liu, S. Effect of rhamnolipid solubilization on hexadecane bioavailability: Enhancement or reduction? J. Hazard. Mater. 2017, 322, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, P.; Lozowicka, B.; Hrynko, I.; Wolejko, E. Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity. Sci. Total Environ. 2016, 571, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, S.I.; Yaroslavtsev, M.V.; Spivakova, N.A.; Kazeev, K.S. Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment. Eurasian Soil Sci. 2013, 46, 176–181. [Google Scholar] [CrossRef]
- Minnikova, T.; Kolesnikov, S.; Minkina, T.; Mandzhieva, S. Assessment of ecological condition of haplic chernozem calcic contaminated with petroleum hydrocarbons during application of bioremediation agents of various natures. Land 2021, 10, 169. [Google Scholar] [CrossRef]
- Stepniewska, Z.; Woli’nska, A.; Ziomek, J. Response of soil catalase activity to chromium contamination. J. Environ. Sci. 2009, 21, 1142–1147. [Google Scholar] [CrossRef]
- Trifonova, T.A.; Chesnokova, S.M.; Kosmacheva, A.G. Investigation of the effect of antibiotics of various groups on the cellulolytic activity of soddy-podzolic soil using laboratory modeling. Agrochemistry 2020, 10, 72–78. [Google Scholar] [CrossRef]
- Kuzina, A.A.; Kolesnikov, S.I.; Minnikova, T.V.; Gaivoronsky, V.G.; Nevedomaya, E.N.; Ter-Misakyants, T.A.; Kazeev, K.S. Ecologically safe concentrations of oil in the soils of the Black Sea coast of the Caucasus. Ecol. Ind. Russ. 2021, 25, 61–65. [Google Scholar] [CrossRef]
- Daud, R.M.; Kolesnikov, S.I.; Kuzina, A.A.; Kazeev, K.S.; Akimenko, Y.V. Development of regional maximum permissible concentrations of oil in soils of arid ecosystems in the South of Russia. Ecol. Ind. Russ. 2019, 23, 66–70. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Tlekhas, Z.R.; Kazeev, K.S.; Val’kov, V.F. Chemical Contamination of Adygea Soils and Changes in Their Biological Properties. Eurasian Soil Sci. 2009, 42, 1397–1403. [Google Scholar] [CrossRef]
- Daud, R.M.; Kolesnikov, S.I.; Kuzina, A.A.; Minnikova, T.V.; Kazeev, K.S.; Ngueg, D.H.; Dang, H.K. Assessment of the cadmium pollution resistance of arid soils in the south of the European part of Russia using biological indicators. Vestn. Mosk. Univ. Seriya 5 Geogr. 2021, 1, 78–87. [Google Scholar]
- Kolesnikov, S.I.; Moshchenko, D.I.; Kuzina, A.A.; Ter-Misakyants, T.A.; Nevedomaya, E.N.; Vernigorova, N.A.; Kazeev, K.S. Ecological standards for the content of heavy metals in brown forest soils of the Crimea and the Caucasus. Ecol. Ind. Russ. 2021, 25, 65–71. [Google Scholar] [CrossRef]
- Kuzina, A.A.; Kolesnikov, S.I.; Minnikova, T.V.; Nevedomaya, E.N.; Ter-Misakyants, T.A.; Kazeev, K.S. Approaches to the development of environmental regional standards for the content of lead in the soils of the Black Sea coast of the Caucasus on the basis of an integral indicator of the biological state of the soil. Sanit. Hyg. 2022, 101, 262–269. [Google Scholar] [CrossRef]
- Soil Cover and Land Resources of the Russian Federation; Soil Science Institute named by Vasily Vasilyevich Dokuchaev’s Russian Academy of Agricultural Sciences: Moscow, Russia, 2001; p. 399.
- Gerasimova, M.I.; Kolesnikova, N.V.; Gurov, I.A. Lithological and geomorphologic factors of yellow podzolic and other soils within the humid subtropical area of the RF (the Sochi dendrarium). Bull. Mosc. Univ. Ser. 5 Geogr. 2010, 3, 61–65. [Google Scholar]
- Kolesnikov, S.I.; Kazeev, K.S.; Akimenko, Y.V. Development of regional standards for pollutants in the soil using biological parameters. Environ. Monit. Assess. 2019, 191, 544. [Google Scholar] [CrossRef]
- Khaziev, F.K. Methods of Soil Enzymology; John Wiley & Sons: Hoboken, NJ, USA, 2005; p. 252. [Google Scholar]
- Kazeev, K.S.; Kolesnikov, S.I.; Akimenko, Y.V.; Dadenko, E.B. Methods of Bio-Diagnostics of Terrestrial Ecosystems; Publishing Southern Federal University: Rostov-on-Don, Russia, 2016; p. 260. [Google Scholar]
- Kolesnikov, S.I.; Zharkova, M.G.; Kazeev, K.S.; Kutuzova, I.V.; Samokhvalova, L.S.; Naleta, E.V.; Zubkov, D.A. Ecotoxicity assessment of heavy metals and crude oil based on biological characteristics of chernozem. Russ. J. Ecol. 2014, 45, 157–166. [Google Scholar] [CrossRef]
- Nikolaeva, O.V.; Terekhova, V.A. Improvement of laboratory phytotest for the ecological evaluation of soils. Eurasian Soil Sci. 2017, 50, 1105–1114. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Zolotareva, O.A.; Tarasenko, I.D.; Yakovlev, A.S. Assessment of ecotoxicity of soils contaminated by heavy metals. Eurasian Soil Sci. 2019, 52, 1274–1288. [Google Scholar] [CrossRef]
No. | Types of Soil | World Reference Base (WRB, 2015) | Sampling Place | Organic Content, % | pH | Grain Composition |
---|---|---|---|---|---|---|
1. | Brown typical soil | Haplic Cambisols Eutric | Anapsky District, State nature reserve “Utrish” | 9.3 | 7.2 | HL |
2. | Brown carbonate soil | Haplic Cambisols Eutric | Anapsky District, State nature reserve “Utrish” | 15.0 | 7.0 | ML |
3. | Brown leached soil | Haplic Cambisols Eutric | Anapsky District, State nature reserve “Utrish” | 6.8 | 7.1 | HL |
4. | Acid brown forest soil | Haplic Cambisols Eutric | Tuapsinsky District, Gorskoe Village | 1.3 | 4.4 | HL |
5. | Acid brown forest podzolized soil | Haplic Cambisols Dystric | City Sochi, Lazarevsky City District, Sochi National Park | 1.7 | 4.1 | LL |
6. | Brown forest slightly unsaturated soils | Haplic Cambisols Eutric | Tuapsinsky District, Dzhubga Village | 1.9 | 5.1 | HL |
7. | Sod-carbonate typical soil | Rendzic Leptosols Eutric | Tuapsinsky District, Dzhubga Village | 5.4 | 7.5 | HL |
8. | Leached sod-carbonate soil | Rendzic Leptosols Eutric | City Sochi, Khostinsky City District, Caucasus reserve, Thysosamshitovaia Grove | 4.8 | 6.9 | HL |
9. | Yellow soil | Albic Luvisols Abruptic | City Sochi, Adlersky City District | 3.2 | 5.2 | HL |
No | Biological Indicator | Methods | Measurement Unit |
---|---|---|---|
1 | Total number of bacteria | Luminescent microscopy with a solution of acridine orange, 40× | 109 bacteria in 1 g of soil dry weight |
2 | Azotobacter sp. abundance | Fouling lumps on Ashby medium | % fouling lumps |
3 | Catalase activity | Rate of decomposition of hydrogen peroxide | mL O2 per 1 g of soil dry weight in 1 min. |
4 | Dehydrogenases activity | Rate of conversion of triphenyl tetrazolium chloride (TPC) to triphenyl formazan (TPF) | mg of TPF per 1 g of soil dry weight for 24 h |
5 | Cellulolytic activity | Percentage of decomposed cotton (30th day) to the initial weight of the cotton on the 1st day of incubation. | % |
6 | Seed germination rate | Seed germination (R. sativus L.) on the contaminated soils in Petri dishes for 7 days | % |
7 | Length of radish roots | Length of the roots (R. sativus L.) after 7 days of the experiment | mm |
Decrease in Soils’ IIBS | <5% | 5%–10% | 10%–25% | >25% |
---|---|---|---|---|
Deterioration of Soils’ Ecological Functions | – | Informative | Chemical, Physico-Chemical, Biochemical; Holistic | Physical |
Soil Contamination Degree | Not | Little | Moderate | High |
Brown typical soils | <55 | 55–100 | 100–300 | >300 |
Brown leached soils | <50 | 50–100 | 100–275 | >275 |
Brown carbonate soils | <50 | 50–100 | 100–250 | >250 |
Acid brown forest soils | <50 | 50–70 | 70–200 | >200 |
Acid brown forest podzolized soils | <50 | 50–70 | 70–200 | >200 |
Brown forest slightly unsaturated soils | <50 | 50–100 | 100–220 | >220 |
Sod-carbonate typical soils | <60 | 60–100 | 100–250 | >250 |
Leached sod-carbonate soils | <50 | 50–100 | 100–250 | >250 |
Yellow soils | <50 | 50–100 | 100–220 | >220 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnikov, S.; Kuzina, A.; Minnikova, T.; Ter-Misyakyants, T.; Nevedomaya, E.; Akimenko, Y.; Trufanov, D.; Kazeev, K.; Burachevskaya, M.; Minkina, T.; et al. Biodiagnostics of Resistance to the Copper (Cu) Pollution of Forest Soils at the Dry and Humid Subtropics in the Greater Caucasus Region. Forests 2022, 13, 1720. https://doi.org/10.3390/f13101720
Kolesnikov S, Kuzina A, Minnikova T, Ter-Misyakyants T, Nevedomaya E, Akimenko Y, Trufanov D, Kazeev K, Burachevskaya M, Minkina T, et al. Biodiagnostics of Resistance to the Copper (Cu) Pollution of Forest Soils at the Dry and Humid Subtropics in the Greater Caucasus Region. Forests. 2022; 13(10):1720. https://doi.org/10.3390/f13101720
Chicago/Turabian StyleKolesnikov, Sergey, Anna Kuzina, Tatiana Minnikova, Tigran Ter-Misyakyants, Elena Nevedomaya, Yulia Akimenko, Dmitry Trufanov, Kamil Kazeev, Marina Burachevskaya, Tatiana Minkina, and et al. 2022. "Biodiagnostics of Resistance to the Copper (Cu) Pollution of Forest Soils at the Dry and Humid Subtropics in the Greater Caucasus Region" Forests 13, no. 10: 1720. https://doi.org/10.3390/f13101720
APA StyleKolesnikov, S., Kuzina, A., Minnikova, T., Ter-Misyakyants, T., Nevedomaya, E., Akimenko, Y., Trufanov, D., Kazeev, K., Burachevskaya, M., Minkina, T., Shende, S. S., & Barakhov, A. (2022). Biodiagnostics of Resistance to the Copper (Cu) Pollution of Forest Soils at the Dry and Humid Subtropics in the Greater Caucasus Region. Forests, 13(10), 1720. https://doi.org/10.3390/f13101720