Phenotypic Variation and Diversity in Fruit, Leaf, Fatty Acid, and Their Relationships to Geoclimatic Factors in Seven Natural Populations of Malania oleifera Chun et S.K. Lee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Trait Measurements
2.3. Statistical Analysis
3. Results
3.1. Phenotypic Variation and Diversity
3.2. Differences among Seven Natural Populations
3.3. Principal Components and Cluster Analysis of the 21 Traits
3.4. Correlations among the 21 Traits and Their Relationship with Geoclimatic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.K. Malania, a new genus of oil-yielding plant. Bull. Bot. Lab. North East. For. Inst. 1980, 1, 67–72. [Google Scholar]
- Sun, W. Malania oleifera. IUCN Red List Threat. Species 1998, e.T32361A9701100. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, G.; Edward Grumbine, R.; Dao, Z.; Sun, W.; Guo, H. Conserving plant species with extremely small populations (PSESP) in China. Biodivers. Conserv. 2013, 22, 803–809. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S. Research status and application perspective of nervonic acid. China Oils Fats 2010, 35, 1–5. [Google Scholar]
- Tang, T.-F.; Liu, X.-M.; Ling, M.; Lai, F.; Zhang, L.; Zhou, Y.-H.; Sun, R.-R. Constituents of the essential oil and fatty acid from Malania oleifera. Ind. Crops Prod. 2013, 43, 1–5. [Google Scholar] [CrossRef]
- China Oleaginous Plants Writing Committee. China Grease Plant; Science Press: Beijing, China, 1987. [Google Scholar]
- Zhou, Y.H.; Li, W.G.; Yi, F.P.; Liu, X.M. Determination of fatty acids in Malania oleifera oil by gas chromatography–mass spectrometry. Chin. J. Chromatogr. 2001, 19, 147–148. [Google Scholar]
- Li, Z.; Ma, S.; Song, H.; Yang, Z.; Zhao, C.; Taylor, D.; Zhang, M. A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid. Tree Physiol. 2021, 41, 331–342. [Google Scholar] [CrossRef]
- Yang, T.; Yu, Q.; Xu, W.; Li, D.Z.; Chen, F.; Liu, A. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. BMC Plant Biol. 2018, 18, 247. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.Q.; Liu, H.; Zhou, S.S.; Zhang, D.X.; Zhao, W.; Wang, S.; Chen, F.; Sun, Y.Q.; Nie, S.; Jia, K.H.; et al. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. Gigascience 2019, 8, giy164. [Google Scholar] [CrossRef] [Green Version]
- Ramanatha Rao, V.; Hodgkin, T. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult. 2002, 68, 1–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.; Xie, Y.; Chen, D.; Sun, X. Altitude shape genetic and phenotypic variations in growth curve parameters of Larix kaempferi. J. For. Res. 2022. [Google Scholar] [CrossRef]
- Mckown, A.D.; Guy, R.D.; Klápště, J.; Geraldes, A.; Friedmann, M.; Cronk, Q.C.B.; El-Kassaby, Y.A.; Mansfield, S.D.; Douglas, C.J. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2014, 201, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.L.; Sun, W.B.; Zhou, Y.; Coombs, D. Variation in seed and seedling traits among natural populations of Trigonobalanus doichangensis (A. Camus) Forman (Fagaceae), a rare and endangered plant in southwest China. New For. 2009, 37, 285–294. [Google Scholar] [CrossRef]
- Dong, L.; Zeng, Y.; Wu, Y.; Huang, Y. Variations in phenotypic traits and chemical compositions of seeds from a natural population in Torreya grandis. J. Zhejiang A F Univ. 2014, 31, 224–230. [Google Scholar]
- Wu, H.; Meng, H.; Wang, S.; Wei, X.; Jiang, M. Geographic patterns and environmental drivers of seed traits of a relict tree species. For. Ecol. Manag. 2018, 422, 59–68. [Google Scholar] [CrossRef]
- Gao, S.; Ren, Y.; Masabni, J.; Zou, F.; Xiong, H.; Zhu, J. Influence of Geographical and Climatic Factors on Quercus variabilis Blume Fruit Phenotypic Diversity. Diversity 2021, 13, 329. [Google Scholar] [CrossRef]
- Ma, Y.; Bi, Q.; Li, G.; Liu, X.; Fu, G.; Zhao, Y.; Wang, L. Provenance variations in kernel oil content, fatty acid profile and biodiesel properties of Xanthoceras sorbifolium Bunge in northern China. Ind. Crops Prod. 2020, 151, 112487. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Lu, X.; Wang, Q.; Han, H.; Zhang, X.; Ma, Y.; Gan, X. Leaf phenotypic variation of endangered plant Tetracentron sinense Oliv. and influence of geographical and climatic factors. J. For. Res. 2021, 32, 623–636. [Google Scholar] [CrossRef]
- Wang, S.H.; Chen, J.; Yang, W.; Hua, M.; Ma, Y.P. Fruiting character variability in wild individuals of Malania oleifera, a highly valued endemic species. Sci. Rep. 2021, 11, 23605. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Li, H.; Chen, D.; Xu, J.; Liu, G.; Pang, X.; Ye, J.; Mo, X.; Chen, H. Phenotypic diversity and variation in natural populations of Erythrophleum fordii, an endangered plant species. Sci. Silvae Sin. 2019, 55, 69–83. [Google Scholar]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 1 April 2022).
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 1 April 2022).
- Hijmans, R.J. Geosphere: Spherical Trigonometry. Available online: https://cran.r-project.org/web/packages/geosphere/index.html (accessed on 1 April 2022).
- Schliep, K.; Potts, A.J.; Morrison, D.A.; Grimm, G.W. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 2017, 8, 1212–1220. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman Group: Harlow, UK, 1996; ISBN 9780582243026. [Google Scholar]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics, 1st ed.; CABI: Cambridge, MA, USA, 2007; Volume 167, ISBN 9781845932855. [Google Scholar]
- Poljak, I.; Kajba, D.; Ljubić, I.; Idžojtić, M. Morphological variability of leaves of Sorbus domestica L. in Croatia. Acta Soc. Bot. Pol. 2015, 84, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Poljak, I.; Vahčić, N.; Liber, Z.; Tumpa, K.; Pintar, V.; Zegnal, I.; Vidaković, A.; Valković, B.; Kajba, D.; Idžojtić, M. Morphological and chemical diversity and antioxidant capacity of the service tree (Sorbus domestica L.) fruits from two eco-geographical regions. Plants 2021, 10, 1691. [Google Scholar] [CrossRef]
- Tao, J.; Wu, M.; Zhong, W.; Jiao, X.; Chen, S.; Jia, H.; Jia, D.; Huang, C. Changes in Fruit Quality and Sugar Components of Wild Actinidia eriantha of Different Varieties (Lines) at the Ripening Stage. Horticulturae 2022, 8, 824. [Google Scholar] [CrossRef]
- Gao, S.; Wang, B.; Liu, F.; Zhao, J.; Yuan, J.; Xiao, S.; Masabni, J.; Zou, F.; Yuan, D. Variation in Fruit Morphology and Seed Oil Fatty Acid Composition of Camellia oleifera Collected from Diverse Regions in Southern China. Horticulturae 2022, 8, 818. [Google Scholar] [CrossRef]
- Poljak, I.; Vahčić, N.; Liber, Z.; Šatović, Z.; Idžojtić, M. Morphological and Chemical Variation of Wild Sweet Chestnut (Castanea sativa Mill.) Populations. Forests 2022, 13, 55. [Google Scholar] [CrossRef]
- Sun, C.; Wang, J.; Duan, J.; Zhao, G.; Weng, X.; Jia, L. Association of Fruit and Seed Traits of Sapindus mukorossi Germplasm with Environmental Factors in Southern China. Forests 2017, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Ma, J.; Xin, H.; Wang, S.; Chen, Z.; Hong, X.; Zhang, B.; Li, L. Comparative Study of the Fatty Acid Composition of the Acer truncatum Bunge from Different Producing Areas. Forests 2022, 13, 1409. [Google Scholar] [CrossRef]
- Dong, L.; Xie, Y.; Sun, X. Full-diallel-based analysis of genetic parameters for growth traits in Japanese larch (Larix kaempferi). New For. 2020, 51, 261–271. [Google Scholar] [CrossRef]
- Lai, M.; Dong, L.; Yi, M.; Sun, S.; Zhang, Y.; Fu, L.; Xu, Z.; Lei, L.; Leng, C.; Zhang, L. Genetic Variation, Heritability and Genotype × Environment Interactions of Resin Yield, Growth Traits and Morphologic Traits for Pinus elliottii at Three Progeny Trials. Forests 2017, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Du, H.; Jia, H.; Chen, H.; Xu, J.; Du, Q. Establishment of Male Core Collection of Eucommia ulmoides Based on Phenotypic Traits. Mol. Plant Breed. 2018, 16, 591–601. [Google Scholar]
- Cao, D.; Zhang, Y.; Cheng, X.; Xiang, X.; Zhang, L.; Hu, J. Genetic Variation of Leaf Phenotypic Traits in Different Populations of Populus cathayana. Sci. Silvae Sin. 2021, 57, 56–67. [Google Scholar]
- Xiao, Y.; Ma, W.-J.; Yi, F.; Yang, G.-J.; Wang, Q.-X.; Wang, P.; Wang, J.-H. Genetic Variation of Growth Traits and Genetic Diversity of Phenotypic Traits in Catalpa fargesii f. duclouxii Germplasm. Bull. Bot. Res. 2018, 38, 843–851. [Google Scholar]
- Zhou, P.; Que, Q.; Ke, B.; Cui, S.; Chen, X.; Zhou, W. Geographical Variation in the Growth and Nutritional Traits of Leaf Powder from Broussonetia papyrifera (L.) L’Hér. ex Vent. from Different Provenances. Forests 2022, 13, 868. [Google Scholar] [CrossRef]
- Kidner, C.A.; Umbreen, S. Why is Leaf Shape so Variable? Int. J. Plant Dev. Biol. 2010, 4, 64–75. [Google Scholar]
- Niinemets, Ü. Adjustment of foliage structure and function to a canopy light gradient in two co-existing deciduous trees. Variability in leaf inclination angles in relation to petiole morphology. Trees-Struct. Funct. 1998, 12, 446–451. [Google Scholar] [CrossRef]
- Ren, J.; Ji, X.; Wang, C.; Hu, J.; Nervo, G.; Li, J. Variation and genetic parameters of leaf morphological traits of eight families from Populus simonii × P. nigra. Forests 2020, 11, 1319. [Google Scholar] [CrossRef]
- Mamo, N.; Mihretu, M.; Fekadu, M.; Tigabu, M.; Teketay, D. Variation in seed and germination characteristics among Juniperus procera populations in Ethiopia. For. Ecol. Manag. 2006, 225, 320–327. [Google Scholar] [CrossRef]
- Du, Q.; Wang, L.; Liu, P.; Qing, J.; Sun, C.; Sun, Z.; Du, H. Fatty acids variation in seed of Eucommia ulmoides populations collected from different regions in China. Forests 2018, 9, 505. [Google Scholar] [CrossRef]
- Gong, M.; Wang, J.; Fu, X.; Kou, W.; Lu, N.; Wang, Q.; Lai, H. Suitable regions forecasting and environmental influencing factors of Malania oleifera in Yunnan and Guangxi. J. Nanjing For. Univ. Sci. Ed. 2022, 46, 44–52. [Google Scholar]
- Xie, W.; Chen, J.; Lai, J.; Shi, H.; Huang, K.; Liu, J.; Li, X. Analysis on Relationship between Geographic Distribution of Malania oleifera and Hydro-thermal Factors. J. Trop. Subtrop. Bot. 2009, 17, 388–394. [Google Scholar]
Population | Sample Size | Sample Age | Annual Average Temperature (°C, AAT) | Annual Average Humidity (%, AAH) | Average Annual Precipitation (mm, AAP) | Latitude (° N, LAT) | Longitude (° E, LON) | Altitude (m, ALT) |
---|---|---|---|---|---|---|---|---|
Bama (P1) | 6 | 22–46 | 20.7 | 80 | 1505.9 | 24.12 | 107.12 | 532.6–541.2 |
Fengshan (P2) | 8 | 25–60 | 19.4 | 79 | 1509.3 | 24.47 | 106.83 | 698.2–953.2 |
Leye (P3) | 20 | 30–80 | 16.8 | 82 | 1327.2 | 24.84 | 106.40 | 986.1–1027.8 |
Lingyun (P4) | 3 | 30–100 | 20.4 | 77 | 1669.6 | 24.33 | 106.77 | 705.6–777.8 |
Tianlin (P5) | 10 | 35–100 | 20.8 | 81 | 1193.3 | 24.39 | 106.32 | 600.8–955.0 |
Funing (P6) | 13 | 30–80 | 19.8 | 78 | 1103.5 | 23.65 | 105.73 | 819.9–878.2 |
Guangnan (P7) | 37 | 30–80 | 17.0 | 78 | 994.7 | 24.24 | 104.92 | 1217.1–1314.6 |
Traits | Code | Mean | SD | Max | Min | Range | CV | H | F Value | |
---|---|---|---|---|---|---|---|---|---|---|
Fruit | Fruit vertical diameter (mm) | FVD | 36.77 | 44.16 | 26.28 | 2.58 | 17.88 | 0.07 | 1.96 | 5.81 ** |
Fruit transverse diameter (mm) | FTD | 41.37 | 45.81 | 25.85 | 2.75 | 19.96 | 0.07 | 1.86 | 2.18 | |
Shape index of fruit | FSI | 0.89 | 1.06 | 0.70 | 0.05 | 0.36 | 0.05 | 1.74 | 13.15 ** | |
Fresh fruit weight (g) | FFW | 36.19 | 46.66 | 10.21 | 5.89 | 36.45 | 0.16 | 1.93 | 2.44 * | |
Pericarp thickness (mm) | PT | 9.42 | 13.34 | 4.05 | 1.63 | 9.29 | 0.17 | 2.02 | 3.19 ** | |
Kernel | Kernel vertical diameter (mm) | KVD | 29.62 | 34.56 | 24.27 | 1.90 | 10.29 | 0.06 | 2.02 | 9.05 ** |
Kernel transverse diameter (mm) | KTD | 32.12 | 36.72 | 26.60 | 1.95 | 10.12 | 0.06 | 2.05 | 4.14 ** | |
Shape index of kernel | KSI | 0.92 | 1.15 | 0.81 | 0.06 | 0.34 | 0.07 | 1.96 | 7.55 ** | |
Fresh kernel weight (g) | KFW | 15.14 | 21.13 | 7.17 | 2.36 | 13.96 | 0.16 | 2.00 | 6.55 ** | |
Dry kernel weight (g) | KDW | 8.84 | 13.42 | 2.02 | 2.39 | 11.40 | 0.27 | 2.00 | 20.82 ** | |
Water content of fresh kernel (g) | WCF | 6.30 | 14.08 | 2.73 | 2.22 | 11.35 | 0.35 | 1.92 | 25.50 ** | |
Water content of dry kernel (%) | WCD | 7.75 | 28.20 | 3.54 | 4.84 | 24.66 | 0.62 | 1.51 | 7.66 ** | |
Leaf | Petiole length (mm) | PL | 12.33 | 17.15 | 8.41 | 2.08 | 8.74 | 0.17 | 2.00 | 11.03 ** |
Knot spacing (mm) | KS | 1.22 | 2.44 | 0.49 | 0.41 | 1.95 | 0.33 | 2.04 | 5.93 ** | |
Leaf length (mm) | LL | 19.12 | 27.80 | 10.50 | 3.45 | 17.30 | 0.18 | 2.06 | 10.88 ** | |
Leaf width (mm) | LW | 5.81 | 8.06 | 3.85 | 0.96 | 4.21 | 0.17 | 1.98 | 5.71 ** | |
Leaf index | LI | 3.32 | 4.28 | 2.35 | 0.40 | 1.93 | 0.12 | 2.06 | 8.33 ** | |
Leaf area (mm2) | LA | 70.67 | 128.92 | 27.74 | 23.35 | 101.18 | 0.33 | 2.04 | 9.99 ** | |
Leaf perimeter (mm) | LP | 44.56 | 64.07 | 26.38 | 7.61 | 37.69 | 0.17 | 2.05 | 10.38 ** | |
Fatty acid | Fatty acid content (%) | FAC | 53.85 | 67.80 | 28.60 | 9.81 | 39.20 | 0.18 | 1.87 | 27.53 ** |
Nervonic acid content (%) | NAC | 45.02 | 51.40 | 21.70 | 4.87 | 29.70 | 0.11 | 1.69 | 3.91 ** | |
Mean (SD) | - | - | - | - | - | 0.18 (0.13) | 1.94 (0.14) |
Traits | P1 | P2 | P3 | P4 | P5 | P6 | P7 | |
---|---|---|---|---|---|---|---|---|
Fruit | FVD | 38.22 ± 3.69 abc | 36.68 ± 2.03 bcd | 37.18 ± 2.63 bc | 40.49 ± 0.59 a | 38.98 ± 2.46 ab | 34.61 ± 3.28 d | 36.19 ± 1.2 cd |
FTD | 40.91 ± 3.67 b | 40.05 ± 3.78 b | 40.53 ± 3.72 b | 43.9 ± 2.32 a | 42.12 ± 2.05 ab | 40.28 ± 2.35 b | 42.17 ± 1.64 ab | |
FSI | 0.94 ± 0.03 a | 0.92 ± 0.05 a | 0.92 ± 0.04 a | 0.92 ± 0.04 a | 0.92 ± 0.03 a | 0.86 ± 0.06 b | 0.86 ± 0.02 b | |
FFW | 35.76 ± 9.81 b | 32.68 ± 8.23 b | 34.15 ± 6.85 b | 42.54 ± 4.38 a | 37.97 ± 5.35 ab | 34.37 ± 5.64 b | 37.77 ± 3.19 ab | |
PT | 11.15 ± 1.37 a | 9.26 ± 2.57 b | 8.88 ± 1.26 b | 11 ± 0.77 a | 10.35 ± 1.04 ab | 8.82 ± 1.85 b | 9.29 ± 1.45 b | |
Kernel | KVD | 28.64 ± 2.73 cd | 29.09 ± 1.33 cd | 31.35 ± 1.54 ab | 32.34 ± 0.35 a | 30.01 ± 1.42 bc | 28.04 ± 1.92 d | 29.18 ± 1.29 cd |
KTD | 29.76 ± 2.51 c | 30.79 ± 2.35 bc | 32.42 ± 1.59 ab | 32.9 ± 3.03 a | 31.77 ± 1.18 ab | 31.46 ± 2.44 abc | 32.88 ± 1.37 a | |
KSI | 0.96 ± 0.04 a | 0.95 ± 0.06 ab | 0.97 ± 0.05 a | 0.99 ± 0.1 a | 0.94 ± 0.04 ab | 0.89 ± 0.05 b | 0.89 ± 0.06 b | |
KFW | 11.66 ± 3.42 c | 14.03 ± 1.96 b | 15.22 ± 1.68 ab | 16.28 ± 3.39 a | 14.96 ± 1.76 ab | 13.77 ± 2.82 b | 16.34 ± 1.6 a | |
KDW | 7.7 ± 2.54 c | 8.03 ± 0.99 bc | 5.72 ± 1.73 d | 10.54 ± 1.62 a | 9.01 ± 1.67 abc | 9.47 ± 1.92 ab | 10.49 ± 1.31 a | |
WCF | 3.96 ± 0.92 c | 6 ± 1.26 b | 9.5 ± 2.13 a | 5.74 ± 2.26 b | 5.95 ± 1.18 b | 4.3 ± 1.24 c | 5.85 ± 0.98 b | |
WCD | 7.61 ± 4.02 abc | 9.14 ± 5.14 abc | 11.8 ± 5.64 a | 8.39 ± 0.18 abc | 10.53 ± 7.5 ab | 7.08 ± 2.77 bc | 4.73 ± 0.96 c | |
Leaf | PL | 15.02 ± 1.87 a | 11.62 ± 1.79 cd | 13.38 ± 1.93 abc | 13.1 ± 1.38 bc | 13.69 ± 1.82 ab | 12.97 ± 2.32 bc | 10.83 ± 0.95 d |
KS | 1.41 ± 0.5 ab | 1.21 ± 0.21 bc | 1.21 ± 0.43 bc | 1.68 ± 0.35 a | 1.31 ± 0.22 abc | 1.6 ± 0.43 ab | 1 ± 0.31 c | |
LL | 19.63 ± 2.14 ab | 17.25 ± 2.8 bc | 21.99 ± 3.33 a | 20.3 ± 2.9 a | 21.15 ± 1.29 a | 20.67 ± 2.36 a | 16.7 ± 2.81 c | |
LI | 3.2 ± 0.25 bc | 3.6 ± 0.41 a | 3.56 ± 0.3 ab | 2.9 ± 0.06 c | 3.57 ± 0.3 ab | 3.19 ± 0.54 bc | 3.15 ± 0.33 c | |
LW | 6.15 ± 0.35 bc | 4.9 ± 1.07 d | 6.21 ± 0.91 ab | 7.03 ± 1.12 a | 5.97 ± 0.5 bc | 6.6 ± 0.99 ab | 5.32 ± 0.69 cd | |
LA | 74.02 ± 10.37 ab | 53.93 ± 20.12 c | 85.24 ± 24.65 a | 92.72 ± 28.93 a | 77.37 ± 9.51 a | 89.2 ± 19.55 a | 55.76 ± 16.45 bc | |
LP | 45.68 ± 4.7 ab | 39.81 ± 6.32 b | 50.6 ± 7.49 a | 47.59 ± 6.51 a | 48.45 ± 2.86 a | 48.65 ± 5.52 a | 39.41 ± 6.1 b | |
Fatty acid | FAC | 55.08 ± 9.12 bc | 50.52 ± 7.54 c | 41.28 ± 6.87 d | 41.7 ± 0.6 d | 51.13 ± 7.99 c | 61.94 ± 4.65 a | 60.04 ± 4.55 ab |
NAC | 48.52 ± 2.22 a | 42.59 ± 7.76 b | 41.89 ± 3.83 b | 48.4 ± 0.72 a | 44.46 ± 2.48 ab | 44.31 ± 7.01 ab | 46.79 ± 3.56 ab |
Traits | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
Fruit | FVD | 0.05 | 0.75 | −0.28 | 0.50 | 0.00 | −0.02 |
FTD | −0.40 | 0.83 | −0.02 | 0.17 | 0.21 | −0.13 | |
FSI | 0.59 | −0.10 | −0.38 | 0.44 | −0.32 | 0.13 | |
FFW | −0.34 | 0.87 | 0.01 | 0.20 | 0.12 | −0.01 | |
PT | −0.21 | 0.25 | 0.01 | 0.82 | 0.21 | −0.21 | |
Kernel | KVD | 0.30 | 0.61 | −0.59 | 0.11 | −0.22 | 0.16 |
KTD | −0.25 | 0.73 | −0.21 | −0.55 | −0.05 | −0.01 | |
KSI | 0.51 | −0.09 | −0.38 | 0.62 | −0.20 | 0.17 | |
KFW | −0.29 | 0.73 | −0.30 | −0.40 | −0.19 | 0.20 | |
KDW | −0.67 | 0.41 | 0.30 | 0.02 | −0.23 | 0.30 | |
WCD | 0.41 | 0.34 | −0.64 | −0.44 | 0.04 | −0.10 | |
Leaf | PL | 0.66 | 0.07 | 0.21 | 0.18 | 0.10 | 0.29 |
KS | 0.49 | 0.34 | 0.54 | 0.05 | −0.10 | −0.14 | |
LL | 0.82 | 0.34 | 0.34 | −0.09 | 0.20 | 0.12 | |
LI | 0.41 | −0.04 | −0.26 | −0.08 | 0.71 | 0.44 | |
LW | 0.60 | 0.40 | 0.57 | −0.05 | −0.28 | −0.20 | |
LA | 0.73 | 0.40 | 0.50 | −0.10 | −0.07 | −0.06 | |
LP | 0.80 | 0.36 | 0.39 | −0.10 | 0.15 | 0.10 | |
WCF | 0.59 | −0.14 | −0.36 | −0.12 | 0.03 | −0.46 | |
Fatty acid | FAC | −0.66 | −0.05 | 0.50 | 0.11 | −0.12 | 0.39 |
NAC | −0.58 | 0.27 | 0.20 | 0.18 | 0.30 | −0.33 | |
Eigen value | 5.97 | 4.58 | 3.01 | 2.37 | 1.17 | 1.10 | |
Contribution | 28.44 | 21.80 | 14.33 | 11.27 | 5.55 | 5.26 | |
Cumulative contribution | 28.44 | 50.24 | 64.57 | 75.84 | 81.39 | 86.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, R.; Tian, Z.; Xu, J.; Sun, W.; Duan, R.; Fu, H.; Li, Y.; Zhang, Y.; Dong, L. Phenotypic Variation and Diversity in Fruit, Leaf, Fatty Acid, and Their Relationships to Geoclimatic Factors in Seven Natural Populations of Malania oleifera Chun et S.K. Lee. Forests 2022, 13, 1733. https://doi.org/10.3390/f13101733
Li H, Wang R, Tian Z, Xu J, Sun W, Duan R, Fu H, Li Y, Zhang Y, Dong L. Phenotypic Variation and Diversity in Fruit, Leaf, Fatty Acid, and Their Relationships to Geoclimatic Factors in Seven Natural Populations of Malania oleifera Chun et S.K. Lee. Forests. 2022; 13(10):1733. https://doi.org/10.3390/f13101733
Chicago/Turabian StyleLi, Hongguo, Ruizhen Wang, Zuwei Tian, Jihuang Xu, Wensheng Sun, Runmei Duan, Hao Fu, Yunmu Li, Yalin Zhang, and Leiming Dong. 2022. "Phenotypic Variation and Diversity in Fruit, Leaf, Fatty Acid, and Their Relationships to Geoclimatic Factors in Seven Natural Populations of Malania oleifera Chun et S.K. Lee" Forests 13, no. 10: 1733. https://doi.org/10.3390/f13101733
APA StyleLi, H., Wang, R., Tian, Z., Xu, J., Sun, W., Duan, R., Fu, H., Li, Y., Zhang, Y., & Dong, L. (2022). Phenotypic Variation and Diversity in Fruit, Leaf, Fatty Acid, and Their Relationships to Geoclimatic Factors in Seven Natural Populations of Malania oleifera Chun et S.K. Lee. Forests, 13(10), 1733. https://doi.org/10.3390/f13101733