Street Tree Structure, Function, and Value: A Review of Scholarly Research (1997–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Record Identification
2.2. Record Screening and Eligibility
2.3. Record Coding
3. Results
3.1. Publication Journal
3.2. Publication Timeline and Study Area Geography
3.3. Research Dimensions and Themes
3.3.1. Structure
3.3.2. Function
3.3.3. Value
4. Discussion
4.1. The Multidimensionality of Urban Street Trees
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, Hannah and Max Roser (2018)—“Urbanization”. Published online at OurWorldInData.org. Available online: https://ourworldindata.org/urbanization (accessed on 1 August 2022).
- WHO (World Health Organization, Regional Office for Europe). Towards More Physical Activity in Cities: Transforming Public Spaces to Promote Physical Activity—A Key Contributor to Achieving the Sustainable Development Goals in Europe. Copenhagen, Denmark. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/345147/WHO-EURO-2017-3305-43064-60272-eng.pdf?sequence=2&isAllowed=y (accessed on 1 August 2022).
- Lawrence, H.W. City Trees: A Historical Geography from the Renaissance Through the Nineteenth Century; University of Virginia Press: Charlottesville, VA, USA, 2006. [Google Scholar]
- John, M.; Dover, V. Street Design: The Secret to Great Cities and Towns; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.W.; Hauer, R.J.; Werner, L.P. Urban Forestry: Planning and Managing Urban Greenspaces, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying Urban Forest Structure, Function, and Value: The Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Livesley, S.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pincetl, S. From the Sanitary City to the Sustainable City: Challenges to Institutionalising Biogenic (Nature’s Services) Infrastructure. Local Environ. 2010, 15, 43–58. [Google Scholar] [CrossRef]
- Seamans, G.S. Mainstreaming the Environmental Benefits of Street Trees. Urban For. Urban Green. 2013, 12, 2–11. [Google Scholar] [CrossRef]
- Young, R.F.; McPherson, E.G. Governing Metropolitan Green Infrastructure in the United States. Landsc. Urban Plan. 2013, 109, 67–75. [Google Scholar] [CrossRef]
- Koeser, A.; Hauer, R.; Norris, K.; Krouse, R. Factors Influencing Long-Term Street Tree Survival in Milwaukee, WI, USA. Urban For. Urban Green. 2013, 12, 562–568. [Google Scholar] [CrossRef]
- Ko, Y.; Lee, J.-H.; McPherson, E.G.; Roman, L.A. Factors Affecting Long-Term Mortality of Residential Shade Trees: Evidence from Sacramento, California. Urban For. Urban Green. 2015, 14, 500–507. [Google Scholar] [CrossRef]
- Ko, Y.; Lee, J.-H.; McPherson, E.G.; Roman, L.A. Long-Term Monitoring of Sacramento Shade Program Trees: Tree Survival, Growth and Energy-Saving Performance. Landsc. Urban Plan. 2015, 143, 183–191. [Google Scholar] [CrossRef]
- Young, R.F. Planting the Living City: Best Practices in Planning Green Infrastructure—Results from Major U.S. Cities. J. Am. Plan. Assoc. 2011, 77, 368–381. [Google Scholar] [CrossRef]
- Moskell, C.; Allred, S.B. Residents’ Beliefs about Responsibility for the Stewardship of Park Trees and Street Trees in New York City. Landsc. Urban Plan. 2013, 120, 85–95. [Google Scholar] [CrossRef]
- Roy, S. Anomalies in Australian Municipal Tree Managers’ Street-Tree Planting and Species Selection Principles. Urban For. Urban Green. 2017, 24, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, C.E.; McDonough, M.H. The Trouble with Trees? Social and Political Dynamics of Street Tree-Planting Efforts in Detroit, Michigan, USA. Urban For. Urban Green. 2018, 31, 221–229. [Google Scholar] [CrossRef]
- Fruth, E.; Kvistad, M.; Marshall, J.; Pfeifer, L.; Rau, L.; Sagebiel, J.; Soto, D.; Tarpey, J.; Weir, J.; Winiarski, B. Economic Valuation of Street-Level Urban Greening: A Case Study from an Evolving Mixed-Use Area in Berlin. Land Use Policy 2019, 89, 104237. [Google Scholar] [CrossRef]
- Eisenman, T.S.; Flanders, T.; Harper, R.W.; Hauer, R.J.; Lieberknecht, K. Traits of A Bloom: A Nationwide Survey of U.S. Urban Tree Planting Initiatives (TPIs). Urban For. Urban Green. 2021, 61, 127006. [Google Scholar] [CrossRef]
- Ball, J.; Mason, S.; Kiesz, A.; McCormick, D.; Brown, C. Assessing the Hazard of Emerald Ash Borer and Other Exotic Stressors to Community Forests. Arboric. Urban For. 2007, 33, 350–359. [Google Scholar] [CrossRef]
- Jutras, P.; Prasher, S.O.; Mehuys, G.R. Artificial Neural Network Prediction of Street Tree Growth Patterns. Trans. ASABE 2010, 53, 983–992. [Google Scholar] [CrossRef]
- Dmuchowski, W.; Brągoszewska, P.; Gozdowski, D.; Baczewska-Dabrowska, A.B.; Chojnacki, T.; Jozwiak, A.; Swiezewska, E.; Gworek, B.; Suwara, I. Strategy of Ginkgo biloba L. in the Mitigation of Salt Stress in the Urban Environment. Urban For. Urban Green. 2019, 38, 223–231. [Google Scholar] [CrossRef]
- McElhinney, A.M.; Harper, R.W. Planting for Resilience: Selecting Urban Trees in MA; Dep’t of Environmental Conservation, University of Massachusetts: Amherst, MA, USA, 2019; 106p. [Google Scholar]
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban Trees, Air Quality, and Asthma: An Interdisciplinary Review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Lee, S.; Moon, H.; Choi, Y.; Yoon, D.K. Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea. Sustainability 2018, 10, 519. [Google Scholar] [CrossRef]
- Roman, L.A.; Conway, T.M.; Eisenman, T.S.; Koeser, A.K.; Barona, C.O.; Locke, D.H.; Jenerette, G.D.; Östberg, J.; Vogt, J. Beyond ‘Trees Are Good’: Disservices, Management Costs, and Tradeoffs in Urban Forestry. Ambio 2020, 50, 615–630. [Google Scholar] [CrossRef]
- Breger, B.S.; Eisenman, T.S.; Kremer, M.E.; Roman, L.A.; Martin, D.G.; Rogan, J. Urban Tree Survival and Stewardship in a State-managed Planting Initiative: A Case Study in Holyoke, Massachusetts. Urban For. Urban Green. 2019, 43, 126382. [Google Scholar] [CrossRef]
- Matsler, A.M. Making ‘Green’ fit in a ‘Grey’ Accounting System: The Institutional Knowledge System Challenges of Valuing Urban Nature as Infrastructural Assets. Environ. Sci. Policy 2019, 99, 160–168. [Google Scholar] [CrossRef]
- Carse, A. Nature as infrastructure: Making and managing the Panama canal watershed. Soc. Stud. Sci. 2012, 42, 539–563. [Google Scholar] [CrossRef]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling Biogeochemical Cycles in Urban Environments: Ecosystem Services, Green Solutions, and Misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban Forests, Ecosystem Services, Green Infrastructure and Nature-Based Solutions: Nexus or Evolving Metaphors? Urban For. Urban Green. Green Infrastruct. Nat. Based Solut. Sustain. Resilient Cities 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Kitchen, L. Are Trees Always ‘Good’? Urban Political Ecology and Environmental Justice in the Valleys of South Wales: Urban Political Ecology and Environmental Justice in South Wales. Int. J. Urban Reg. Res. 2013, 37, 1968–1983. [Google Scholar] [CrossRef]
- Gerrish, E.; Watkins, S.L. The Relationship between Urban Forests and Income: A Meta-Analysis. Landsc. Urban Plan. 2018, 170, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.L.; Gerrish, E. The Relationship between Urban Forests and Race: A Meta-Analysis. J. Environ. Manag. 2018, 209, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, M.; Roberts, H.; McEachan, R.; Dallimer, M. Contrasting Distributions of Urban Green Infrastructure across Social and Ethno-Racial Groups. Landsc. Urban Plan. 2018, 175, 136–148. [Google Scholar] [CrossRef]
- Carmichael, C.E.; McDonough, M.H. Community Stories: Explaining Resistance to Street Tree-Planting Programs in Detroit, Michigan, USA. Soc. Nat. Resour. 2019, 32, 588–605. [Google Scholar] [CrossRef]
- Mcbride, J.R. The World’s Urban Forests: History, Composition, Design, Function and Management; Springer: New York, NY, USA, 2017; Volume 8. [Google Scholar]
- Smart, N.; Eisenman, T.S.; Karvonen, A. Street Tree Density and Distribution: An International Analysis of Five Capital Cities. Front. Ecol. Evol. 2020, 8, 188. [Google Scholar] [CrossRef]
- Saaroni, H.; Amorim, J.; Hiemstra, J.; Pearlmutter, D. Urban Green Infrastructure as a Tool for Urban Heat Mitigation: Survey of Research Methodologies and Findings across Different Climatic Regions. Urban Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Ewing, R.; Dumbaugh, E. The Built Environment and Traffic Safety: A Review of Empirical Evidence. J. Plan. Lit. 2009, 23, 347–367. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; MacIntyre, H.; et al. Health and Climate Related Ecosystem Services Provided by Street Trees in the Urban Environment. Environ. Health A Glob. Access Sci. Source 2016, 15 (Suppl. S1), 95–111. [Google Scholar] [CrossRef] [Green Version]
- Mei, P.; Malik, V.; Harper, R.W.; Jiménez, J.M. Air Pollution, Human Health and the Benefits of Trees: A Biomolecular and Physiologic Perspective. Arboric. J. 2021, 43, 19–40. [Google Scholar] [CrossRef]
- Harper, R.W.; Bloniarz, D.V.; DeStefano, S.; Nicolson, C.R. Urban Forest Management in New England: Towards a Contemporary Understanding of Tree Wardens in Massachusetts Communities. Arboric. J. 2017, 39, 162–178. [Google Scholar] [CrossRef]
- Harper, R.W.; Huff, E.S.; Bloniarz, D.V.; DeStefano, S.; Nicolson, C.R. Exploring the Characteristics of Successful Volunteer-Led Urban Forest Tree Committees in Massachusetts. Urban For. Urban Green. 2018, 34, 311–317. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Roman, L.A.; Locke, D.; Mincey, S.K.; Sanders, J.R.; Fichman, E.S.; Duran-Mitchell, M.; Tobing, S.L. Branching out to Residential Lands: Missions and Strategies of Five Tree Distribution Programs in the U.S. Urban For. Urban Green. 2017, 22, 24–35. [Google Scholar] [CrossRef]
- Bentsen, P.; Lindholst, A.C.; Konijnendijk, C.C. Reviewing Eight Years of Urban Forestry & Urban Greening: Taking Stock, Looking Ahead. Urban For. Urban Green. 2010, 9, 273–280. [Google Scholar] [CrossRef]
- Ostoić, S.K.; Bosch, C.C.K.V.D. Exploring Global Scientific Discourses on Urban Forestry. Urban For. Urban Green. 2015, 14, 129–138. [Google Scholar] [CrossRef]
- Horte, O.S.; Eisenman, T.S. Urban Greenways: A Systematic Review and Typology. Land 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, D.; Sutton, A.; Carroll, C.; Booth, A.; Wong, R. Literature Searching for Social Science Systematic Reviews: Consideration of a Range of Search Techniques: Literature Searching for Social Science Systematic Reviews. Health Inf. Libr. J. 2009, 27, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies: A Typology of Reviews, Maria J. Grant & Andrew Booth. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Neimanis, A.; Castleden, H.; Rainham, D. Examining the Place of Ecological Integrity in Environmental Justice: A Systematic Review. Local Environ. 2012, 17, 349–367. [Google Scholar] [CrossRef]
- Sallis, J.F.; Spoon, C.; Cavill, N.; Engelberg, J.K.; Gebel, K.; Parker, M.; Thornton, C.M.; Lou, D.; Wilson, A.L.; Cutter, C.L.; et al. Co-Benefits of Designing Communities for Active Living: An Exploration of Literature. Int. J. Behav. Nutr. Phys. Act. 2015, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Morgenroth, J.; Östberg, J. Measuring and Monitoring Urban Trees and Urban Forests. In Routledge Handbook of Urban Forestry; Routledge: New York, NY, USA, 2017; p. 16. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Maco, S.E.; McPherson, E.G. Assessing Canopy Cover over Streets and Sidewalks in Street Tree Populations. J. Arboric. 2002, 28, 7. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- McPherson, E.G.; van Doorn, N.; de Goede, J. Structure, Function and Value of Street Trees in California, USA. Urban For. Urban Green. 2016, 17, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Kenter, J.O.; O’Brien, L.; Hockley, N.; Ravenscroft, N.; Fazey, I.; Irvine, K.N.; Reed, M.S.; Christie, M.; Brady, E.; Bryce, R.; et al. What Are Shared and Social Values of Ecosystems? Ecol. Econ. 2015, 111, 86–99. [Google Scholar] [CrossRef]
- Hilbert, D.R.; North, E.A.; Hauer, R.J.; Koeser, A.K.; McLean, D.C.; Northrop, R.J.; Andreu, M.; Parbs, S. Predicting Trunk Flare Diameter to Prevent Tree Damage to Infrastructure. Urban For. Urban Green. 2020, 49, 126645. [Google Scholar] [CrossRef]
- Ernstson, H.; Sörlin, S. Ecosystem Services as Technology of Globalization: On Articulating Values in Urban Nature. Ecol. Econ. 2013, 86, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Shams, Z.I. Changes in Diversity and Composition of Flora Along a Corridor of Different Land Uses in Karachi over 20 Years: Causes and Implications. Urban For. Urban Green. 2016, 17, 71–79. [Google Scholar] [CrossRef]
- Srivanit, M.; Jareemit, D. Modeling the Influences of Layouts of Residential Townhouses and Tree-Planting Patterns on Outdoor Thermal Comfort in Bangkok Suburb. J. Build. Eng. 2020, 30, 101262. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Wagner, J.E.; Nowak, D.J.; De la Maza, C.L.; Rodriguez, M.; Crane, D.E. Analyzing the Cost Effectiveness of Santiago, Chile’s Policy of Using Urban Forests to Improve Air Quality. J. Environ. Manag. 2008, 86, 148–157. [Google Scholar] [CrossRef]
- Chaparro, M.A.; Castañeda-Miranda, A.G.; Marié, D.C.; Gargiulo, J.D.; Lavornia, J.; Natal, M.; Böhnel, H.N. Fine air pollution particles trapped by street tree barks: In situ magnetic biomonitoring. Environ. Pollut. 2020, 266, 115229. [Google Scholar] [CrossRef]
- Duarte, V.; Silva, E.G.; Hass, I.C.R.; Bedendo, I.P.; Kitajima, E.W. First Report of a Group 16SrIII-B Phytoplasma Associated with Decline of China Tree in Brazil. Plant Dis. 2009, 93, 666. [Google Scholar] [CrossRef]
- Mikami, O.K.; Takamatsu, M.; Yarita, R. Repurposing a Traditional Japanese Method of Pest Control for Wintering Pine Moths, Komo-Trap, for Use against Summer and Winter Populations of Fall Webworms. PeerJ 2020, 8, e9244. [Google Scholar] [CrossRef]
- Dale, A.; Youngsteadt, E.; Frank, S. Forecasting the Effects of Heat and Pests on Urban Trees: Impervious Surface Thresholds and the ‘Pace-to-Plant’ Technique. Arboric. Urban For. 2016, 42, 181–191. [Google Scholar] [CrossRef]
- Yun, H.Y.; Rossman, A.Y.; Byrne, J. First Report of Gymnosporangium sabinae, European Pear Rust, on Bradford Pear in Michigan. Plant Dis. 2009, 93, 841. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.C.; van der Linde, E.J. Shot-Hole Reaction of Trichilia Emetica in Response to Infection by Cocconia Concentrica in South Africa. Plant Dis. 2012, 96, 916. [Google Scholar] [CrossRef] [PubMed]
- Roman, L.A.; Scatena, F.N. Street Tree Survival Rates: Meta-Analysis of Previous Studies and Application to a Field Survey in Philadelphia, PA, USA. Urban For. Urban Green. 2011, 10, 269–274. [Google Scholar] [CrossRef]
- Croeser, T.; Ordóñez, C.; Threlfall, C.; Kendal, D.; van der Ree, R.; Callow, D.; Livesley, S.J. Patterns of Tree Removal and Canopy Change on Public and Private Land in the City of Melbourne. Sustain. Cities Soc. 2020, 56, 102096. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Deng, M.; Liu, R.; Niu, S.; Fan, G. Identification and Functional Analysis of MicroRNAs and Their Targets in Platanus acerifolia under Lead (Pb) Stress. Int. J. Mol. Sci. 2015, 16, 7098–7111. [Google Scholar] [CrossRef] [Green Version]
- Caplan, J.S.; Galanti, R.C.; Olshevski, S.; Eisenman, S.W. Water Relations of Street Trees in Green Infrastructure Tree Trench Systems. Urban For. Urban Green. 2019, 41, 170–178. [Google Scholar] [CrossRef]
- Koeser, A.; McLean, D.; Hasing, G.; Allison, R.B. Frequency, Severity, and Detectability of Internal Trunk Decay of Street Tree Quercus spp. in Tampa, Florida, U.S. Arboric. Urban For. 2016, 42, 217–225. [Google Scholar] [CrossRef]
- Richardson, E.; Shackleton, C.M. The Extent and Perceptions of Vandalism as a Cause of Street Tree Damage in Small Towns in the Eastern Cape, South Africa. Urban For. Urban Green. 2014, 13, 425–432. [Google Scholar] [CrossRef]
- Hauer, R.J.; Koeser, A.K.; Parbs, S.; Kringer, J.; Krouse, R.; Ottman, K.; Miller, R.W.; Sivyer, D.; Timilsina, N.; Werner, L.P. Long-term Effects and Development of a Tree Preservation Program on Tree Condition, Survival, and Growth. Landsc. Urban Plan. 2020, 193, 103670. [Google Scholar] [CrossRef]
- Gerhold, H. Serviceberry Cultivars Tested as Street Trees: Initial Results. J. Arboric. 1999, 25, 4. [Google Scholar] [CrossRef]
- Gerhold, H. Callery Pear Cultivars Tested As Street Trees: Final Report on a 12-year Study. Arboric. Urban For. 2007, 33, 153–156. [Google Scholar] [CrossRef]
- Gerhold, H. Tree Lilac Cultivars Tested as Street Trees: Initial Results. J. Arboric. 1999, 25, 4. [Google Scholar] [CrossRef]
- Gerhold, H. Serviceberry Cultivars Tested as Street Trees: Second Report. Arboric. Urban For. 2008, 34, 129–132. [Google Scholar] [CrossRef]
- Takagi, M.; Gyokusen, K. Light and Atmospheric Pollution Affect Photosynthesis of Street Trees in Urban Environments. Urban For. Urban Green. 2004, 2, 167–171. [Google Scholar] [CrossRef]
- Marion, L.; Gričar, J.; Oven, P. Wood Formation in Urban Norway Maple Trees Studied by the Micro-Coring Method. Intra-Annu. Anal. Wood Form. 2007, 25, 97–102. [Google Scholar] [CrossRef]
- De la Mota, D.; Day, S.D.; Owen, J.S.; Stewart, R.D.; Steele, M.K.; Sridhar, V. Porous-Permeable Pavements Promote Growth and Establishment and Modify Root Depth Distribution of Platanus × acerifolia (Aiton) Willd. in Simulated Urban Tree Pits. Cemeteries Green Urban Spaces 2018, 33, 27–36. [Google Scholar] [CrossRef]
- Tirado-Corbalá, R.; Slater, B. Soil Compaction Effects on the Establishment of Three Tropical Tree Species. Arboric. Urban For. 2010, 36, 164–170. [Google Scholar] [CrossRef]
- Kämäräinen, A.; Riikonen, A.; Simojoki, A.; Lindén, L. A Case Study of Street Tree Soil Aeration in Two Different Soil Types. Arboric. Urban For. 2018, 44, 174–184. [Google Scholar] [CrossRef]
- Seguin, R.; Kargar, M.; Prasher, S.O.; Clark, O.G.; Jutras, P. Remediating Montreal’s Tree Pit Soil Applying an Ash Tree-Derived Biochar. Water Air Soil Pollut. 2018, 229, 84. [Google Scholar] [CrossRef]
- Kargar, M.; Clark, O.G.; Hendershot, W.H.; Jutras, P.; Prasher, S.O. Bioavailability of Sodium and Trace Metals under Direct and Indirect Effects of Compost in Urban Soils. J. Environ. Qual. 2016, 45, 1003–1012. [Google Scholar] [CrossRef]
- Cannavo, P.; Guénon, R.; Galopin, G.; Vidal-Beaudet, L. Technosols Made with Various Urban Wastes Showed Contrasted Performance for Tree Development during a 3-Year Experiment. Environ. Earth Sci. 2018, 77, 650. [Google Scholar] [CrossRef]
- Nielsen, C.; Bühler, O.; Kristoffersen, P. Soil Water Dynamics and Growth of Street and Park Trees. Arboric. Urban For. 2007, 33, 231–245. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Roloff, A. Climatic Response and Impacts of Drought on Oaks at Urban and Forest Sites. Urban For. Urban Green. 2013, 12, 597–605. [Google Scholar] [CrossRef]
- Timonen, S.; Kauppinen, P. Mycorrhizal Colonisation Patterns of Tilia Trees in Street, Nursery and Forest Habitats in Southern Finland. Urban For. Urban Green. 2008, 7, 265–276. [Google Scholar] [CrossRef]
- Nielsen, A.; Östberg, J.; Delshammar, T. Review of Urban Tree Inventory Methods Used to Collect Data at Single-Tree Level. Arboric. Urban For. 2014, 40, 96–111. [Google Scholar] [CrossRef]
- Pilant, A.; Endres, K.; Rosenbaum, D.; Gundersen, G. US EPA EnviroAtlas Meter-Scale Urban Land Cover (MULC): 1-m Pixel Land Cover Class Definitions and Guidance. Remote Sens. 2020, 12, 1909. [Google Scholar] [CrossRef]
- Larkin, A.; Hystad, P. Evaluating Street View Exposure Measures of Visible Green Space for Health Research. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Peper, P.; McPherson, E.G.; Mori, S. Predictive Equations for Dimensions and Leaf Area of Coastal Southern California Street Trees. J. Arboric. 2001, 27, 169–180. [Google Scholar] [CrossRef]
- Small, C.; Lu, J.W. Estimation and Vicarious Validation of Urban Vegetation Abundance by Spectral Mixture Analysis. Remote Sens. Environ. 2006, 100, 441–456. [Google Scholar] [CrossRef]
- Rugel, E.J.; Henderson, S.B.; Carpiano, R.M.; Brauer, M. Beyond the Normalized Difference Vegetation Index (NDVI): Developing a Natural Space Index for Population-Level Health Research. Environ. Res. 2017, 159, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; McNeil, B.E.; Warner, T.A.; Maxwell, A.E.; Dahle, G.A.; Eutsler, E.; Li, J. Discriminating Tree Species at Different Taxonomic Levels Using Multi-Temporal WorldView-3 Imagery in Washington D.C., USA. Remote Sens. Environ. 2020, 246, 111811. [Google Scholar] [CrossRef]
- Fang, F.; McNeil, B.; Warner, T.; Dahle, G.; Eutsler, E. Street Tree Health from Space? An Evaluation Using WorldView-3 Data and the Washington D.C. Street Tree Spatial Database. Urban For. Urban Green. 2020, 49, 126634. [Google Scholar] [CrossRef]
- Nordbo, A.; Karsisto, P.; Matikainen, L.; Wood, C.R.; Järvi, L. Urban Surface Cover Determined with Airborne Lidar at 2m Resolution—Implications for Surface Energy Balance Modelling. Urban Clim. 2015, 13, 52–72. [Google Scholar] [CrossRef]
- Jutras, P.; Prasher, S.; Dutilleul, P. Identification of Significant Street Tree Inventory Parameters Using Multivariate Statistical Analyses. Arboric. Urban For. 2009, 35, 53–62. [Google Scholar] [CrossRef]
- Tanhuanpää, T.; Vastaranta, M.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H.; Alho, P.; Raisio, J. Mapping of Urban Roadside Trees—A Case Study in the Tree Register Update Process in Helsinki City. Urban For. Urban Green. 2014, 13, 562–570. [Google Scholar] [CrossRef]
- Stubbings, P.; Peskett, J.; Rowe, F.; Arribas-Bel, D. A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep Learning. Remote Sens. 2019, 11, 1395. [Google Scholar] [CrossRef] [Green Version]
- Branson, S.; Wegner, J.D.; Hall, D.; Lang, N.; Schindler, K.; Perona, P. From Google Maps to a Fine-Grained Catalog of Street trees. ISPRS J. Photogramm. Remote Sens. 2018, 135, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ratti, C. Mapping the Spatial Distribution of Shade Provision of Street Trees in Boston Using Google Street View Panoramas. Urban For. Urban Green. 2018, 31, 109–119. [Google Scholar] [CrossRef]
- Berland, A.; Roman, L.A.; Vogt, J. Can Field Crews Telecommute? Varied Data Quality from Citizen Science Tree Inventories Conducted Using Street-Level Imagery. Forests 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Laumer, D.; Lang, N.; van Doorn, N.; Mac Aodha, O.; Perona, P.; Wegner, J.D. Geocoding of Trees from Street Addresses and Street-Level Images. ISPRS J. Photogramm. Remote Sens. 2020, 162, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Lantini, L.; Alani, A.M.; Giannakis, I.; Benedetto, A.; Tosti, F. Application of Ground Penetrating Radar for Mapping Tree Root System Architecture and Mass Density of Street Trees. Adv. Transp. Stud. 2019, 3, 51–62. [Google Scholar] [CrossRef]
- Li, L.; Li, D.; Zhu, H.; Li, Y. A Dual Growing Method for the Automatic Extraction of Individual Trees from Mobile Laser Scanning Data. ISPRS J. Photogramm. Remote Sens. 2016, 120, 37–52. [Google Scholar] [CrossRef]
- Xu, S.; Xu, S.; Ye, N.; Zhu, F. Automatic Extraction of Street Trees’ Nonphotosynthetic Components from MLS Data. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2018, 69, 64–77. [Google Scholar] [CrossRef]
- Xu, J.; Shan, J.; Wang, G. Hierarchical Modeling of Street Trees Using Mobile Laser Scanning. Remote Sens. 2020, 12, 2321. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, P.; Liu, X.; Zhou, H. Street Tree Segmentation from Mobile Laser Scanning Data. Int. J. Remote Sens. 2020, 41, 7145–7162. [Google Scholar] [CrossRef]
- Xu, S.; Sun, X.; Yun, J.; Wang, H. A New Clustering-Based Framework to the Stem Estimation and Growth Fitting of Street Trees from Mobile Laser Scanning Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3240–3250. [Google Scholar] [CrossRef]
- Husain, A.; Vaishya, R.C. Detection and Thinning of Street Trees for Calculation of Morphological Parameters Using Mobile Laser Scanner Data. Remote Sens. Appl. Soc. Environ. 2019, 13, 375–388. [Google Scholar] [CrossRef]
- Roberts, J.; Koeser, A.; Abd-Elrahman, A.; Wilkinson, B.; Hansen, G.; Landry, S.; Perez, A. Mobile Terrestrial Photogrammetry for Street Tree Mapping and Measurements. Forests 2019, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Yang, J. A Probabilistic Graphical Model for the Classification of Mobile LiDAR Point Clouds. ISPRS J. Photogramm. Remote Sens. 2018, 143, 108–123. [Google Scholar] [CrossRef]
- Pedlar, J.H.; McKenney, D.W.; Allen, D.; Lawrence, K.; Lawrence, G.; Campbell, K. A Street Tree Survey for Canadian Communities: Protocol and Early Results. For. Chron. 2013, 89, 753–758. [Google Scholar] [CrossRef]
- Crown, C.A.; Greer, B.Z.; Gift, D.M.; Watt, F.S. Every Tree Counts: Reflections on NYC’s Third Volunteer Street Tree Inventory. Arboric. Urban For. 2018, 44. [Google Scholar] [CrossRef]
- Roman, L.A.; Scharenbroch, B.C.; Östberg, J.P.A.; Mueller, L.S.; Henning, J.G.; Koeser, A.K.; Sanders, J.R.; Betz, D.R.; Jordan, R.C. Data Quality in Citizen Science Urban Tree Inventories. Urban For. Urban Green. 2017, 22, 124–135. [Google Scholar] [CrossRef]
- Magarik, Y.A.; Roman, L.A.; Henning, J.G. How Should We Measure the DBH of Multi-Stemmed Urban Trees? Urban For. Urban Green. 2020, 47, 126481. [Google Scholar] [CrossRef]
- Koch, F.H.; Ambrose, M.J.; Yemshanov, D.; Wiseman, P.E.; Cowett, F. Modeling Urban Distributions of Host Trees for Invasive Forest Insects in the Eastern and Central USA: A Three-Step Approach Using Field Inventory Data. For. Ecol. Manag. 2018, 417, 222–236. [Google Scholar] [CrossRef]
- Poracsky, J.; Scott, M. Industrial-Area Street Trees in Portland, Oregon. J. Arboric. 1999, 25, 9. [Google Scholar] [CrossRef]
- Jim, C.; Liu, H.H. Storm Damage on Urban Trees in Guangzhou, China. Landsc. Urban Plan. 1997, 38, 45–59. [Google Scholar] [CrossRef]
- Sreetheran, M.; Adnan, M.; Azuar, A.K. Street Tree Inventory and Tree Risk Assessment of Selected Major Roads in Kuala Lumpur, Malaysia. Arboric. Urban For. 2011, 37, 226–235. [Google Scholar] [CrossRef]
- Van Doorn, N.S.; McPherson, E.G. Demographic Trends in Claremont California’s Street Tree Population. Urban Ecosyst. Chall. Oppor. Urban Dev. 2018, 29, 200–211. [Google Scholar] [CrossRef]
- Stewart, G.H.; Ignatieva, M.; Meurk, C.D.; Earl, R.D. The Re-Emergence of Indigenous Forest in an Urban Environment, Christchurch, New Zealand. Urban For. Urban Green. 2004, 2, 149–158. [Google Scholar] [CrossRef]
- Raupp, M.J.; Cumming, A.B.; Raupp, E.C. Street Tree Diversity in Eastern North America and Its Potential for Tree Loss to Exotic Borers. Arboric. Urban For. 2006, 32, 297–304. [Google Scholar] [CrossRef]
- Wittig, R.; Becker, U. The Spontaneous Flora Around Street Trees in Cities—A Striking Example for the Worldwide Homogenization of the Flora of Urban Habitats. Flora-Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 704–709. [Google Scholar] [CrossRef]
- Shackleton, C. Do Indigenous Street Trees Promote More Biodiversity than Alien Ones? Evidence Using Mistletoes and Birds in South Africa. Forests 2016, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Youngsteadt, E.; Ernst, A.F.; Dunn, R.R.; Frank, S.D. Responses of Arthropod Populations to Warming Depend on Latitude: Evidence from Urban Heat Islands. Glob. Chang. Biol. 2017, 23, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Cobley, L.A.E.; Pataki, D.E. Vehicle Emissions and Fertilizer Impact the Leaf Chemistry of Urban Trees in Salt Lake Valley, UT. Environ. Pollut. 2019, 254, 112984. [Google Scholar] [CrossRef] [PubMed]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the Removal of Atmospheric Particulate Pollution by the Urban Tree Canopy of London, under Current and Future Environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Yang, H.; Chen, T.; Lin, Y.; Buccolieri, R.; Mattsson, M.; Zhang, M.; Hang, J.; Wang, Q. Integrated Impacts of Tree Planting and Street Aspect Ratios on CO Dispersion and Personal Exposure in Full-Scale Street Canyons. Build. Environ. 2020, 169, 106529. [Google Scholar] [CrossRef]
- Yeager, R.; Riggs, D.W.; DeJarnett, N.; Srivastava, S.; Lorkiewicz, P.; Xie, Z.; Krivokhizhina, T.; Keith, R.J.; Srivastava, S.; Browning, M.H.; et al. Association between Residential Greenness and Exposure to Volatile Organic Compounds. Sci. Total Environ. 2020, 707, 135435. [Google Scholar] [CrossRef]
- Paoletti, E. Ozone and urban forests in Italy. Environ. Pollut. 2009, 157, 1506–1512. [Google Scholar] [CrossRef]
- Karttunen, S.; Kurppa, M.; Auvinen, M.; Hellsten, A.; Järvi, L. Large-Eddy Simulation of the Optimal Street-Tree Layout for Pedestrian-Level Aerosol Particle Concentrations—A Case Study from a City-Boulevard. Atmos. Environ. X 2020, 6, 100073. [Google Scholar] [CrossRef]
- Weichenthal, S.; Van Ryswyk, K.; Goldstein, A.; Shekarrizfard, M.; Hatzopoulou, M. Characterizing the Spatial Distribution of Ambient Ultrafine Particles in Toronto, Canada: A Land Use Regression Model. Environ. Pollut. 2016, 208, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Blanusa, T.; Fantozzi, F.; Monaci, F.; Bargagli, R. Leaf Trapping and Retention of Particles by Holm Oak and Other Common Tree Species in Mediterranean urban Environments. Urban For. Urban Green. 2015, 14, 1095–1101. [Google Scholar] [CrossRef]
- Sadeghi, K.M.; Kharaghani, S.; Tam, W.; Gaerlan, N.; Loáiciga, H. Green Stormwater Infrastructure (GSI) for Stormwater Management in the City of Los Angeles: Avalon Green Alleys Network. Environ. Process. 2019, 6, 265–281. [Google Scholar] [CrossRef]
- Gonzalez-Sosa, E.; Braud, I.; Piña, R.B.; Loza, C.A.M.; Salinas, N.M.R.; Chavez, C.V. A Methodology to Quantify Ecohydrological Services of Street Trees. Ecohydrol. Hydrobiol. 2017, 17, 190–206. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Avellaneda, P.; Briggs, J.; Fowler, G.; Wildey, R. Seasonal Performance Variations for Storm-Water Management Systems in Cold Climate Conditions. J. Environ. Eng. 2009, 135, 128–137. [Google Scholar] [CrossRef]
- Frosi, M.H.; Kargar, M.; Jutras, P.; Prasher, S.O.; Clark, O.G. Street Tree Pits as Bioretention Units: Effects of Soil Organic Matter and Area Permeability on the Volume and Quality of Urban Runoff. Water Air Soil Pollut. 2019, 230, 14. [Google Scholar] [CrossRef]
- Elliott, R.M.; Adkins, E.R.; Culligan, P.J.; Palmer, M.I. Stormwater Infiltration Capacity of Street Tree Pits: Quantifying the Influence of Different Design and Management Strategies in New York City. Ecol. Eng. 2018, 111, 157–166. [Google Scholar] [CrossRef]
- Boukili, V.K.; Bebber, D.P.; Mortimer, T.; Venicx, G.; Lefcourt, D.; Chandler, M.; Eisenberg, C. Assessing the Performance of Urban Forest Carbon Sequestration Models Using Direct Measurements of Tree Growth. Urban For. Urban Green. 2017, 24, 212–221. [Google Scholar] [CrossRef]
- Richter, S.; Haase, D.; Thestorf, K.; Makki, M. Carbon Pools of Berlin, Germany: Organic Carbon in Soils and Aboveground in Trees. Urban For. Urban Green. 2020, 54, 126777. [Google Scholar] [CrossRef]
- Riikonen, A.; Pumpanen, J.; Mäki, M.; Nikinmaa, E. High Carbon Losses from Established Growing Sites Delay the Carbon Sequestration Benefits of Street Tree Plantings—A Case Study in Helsinki, Finland. Urban For. Urban Green. 2017, 26, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Evaluation of Greenhouse Gas Emissions and Energy Recovery from Planting Street Trees. Greenh. Gases Sci. Technol. 2020, 10, 604–612. [Google Scholar] [CrossRef]
- Smith, I.A.; Dearborn, V.K.; Hutyra, L.R. Live Fast, Die Young: Accelerated Growth, Mortality, and Turnover in Street Trees. PLoS ONE 2019, 14, e0215846. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, D.; Petrucci, R.; Torre, L.; Micheli, M.; Menconi, M. Street Trees’ Management Perspectives: Reuse of Tilia sp.’s Pruning Waste for Insulation Purposes. Urban For. Urban Green. 2019, 38, 177–182. [Google Scholar] [CrossRef]
- Moodley, R.; Koorbanally, N.; Jonnalagadda, S.B. Elemental Composition and Nutritional Value of the Edible Fruits of Harpephyllum caffrum and Impact of Soil Quality on Their Chemical Characteristics. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2013, 48, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Čukanović, J.; Tešević, V.; Jadranin, M.; Ljubojević, M.; Mladenović, E.; Kostić, S. Horse Chestnut (Aesculus hippocastanum L.) Seed Fatty Acids, Flavonoids and Heavy Metals Plasticity to Different Urban Environments. Biochem. Syst. Ecol. 2020, 89, 103980. [Google Scholar] [CrossRef]
- Hurley, P.T.; Emery, M.R. Locating Provisioning Ecosystem Services in Urban Forests: Forageable Woody Species in New York City, USA. Landsc. Urban Plan. 2018, 170, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Reid, C.E.; Clougherty, J.E.; Shmool, J.L.; Kubzansky, L.D. Is All Urban Green Space the Same? A Comparison of the Health Benefits of Trees and Grass in New York City. Int. J. Environ. Res. Public Health 2017, 14, 1411. [Google Scholar] [CrossRef] [Green Version]
- Gandelman, N.; Piani, G.; Ferre, Z. Neighborhood Determinants of Quality of Life. J. Happiness Stud. 2012, 13, 547–563. [Google Scholar] [CrossRef]
- Taylor, M.S.; Wheeler, B.W.; White, M.P.; Economou, T.; Osborne, N.J. Research Note: Urban Street Tree Density and Antidepressant Prescription Rates—A Cross-Sectional Study in London, UK. Landsc. Urban Plan. 2015, 136, 174–179. [Google Scholar] [CrossRef]
- Rugel, E.J.; Carpiano, R.M.; Henderson, S.B.; Brauer, M. Exposure to Natural Space, Sense of Community Belonging, and Adverse Mental Health Outcomes Across an Urban Region. Environ. Res. 2019, 171, 365–377. [Google Scholar] [CrossRef]
- Masoudinejad, S.; Hartig, T. Window View to the Sky as a Restorative Resource for Residents in Densely Populated Cities. Environ. Behav. 2020, 52, 401–436. [Google Scholar] [CrossRef]
- Vich, G.; Marquet, O.; Miralles-Guasch, C. Green Streetscape and Walking: Exploring Active Mobility Patterns in Dense and Compact Cities. J. Transp. Health 2019, 12, 50–59. [Google Scholar] [CrossRef]
- Nawrath, M.; Kowarik, I.; Fischer, L.K. The Influence of Green Streets on Cycling Behavior in European Cities. Landsc. Urban Plan. 2019, 190, 103598. [Google Scholar] [CrossRef]
- Tsai, W.-L.; Yngve, L.; Zhou, Y.; Beyer, K.M.; Bersch, A.; Malecki, K.M.; Jackson, L.E. Street-Level Neighborhood Greenery Linked to Active Transportation: A Case Study in Milwaukee and Green Bay, WI, USA. Landsc. Urban Plan. 2019, 191, 103619. [Google Scholar] [CrossRef]
- Abass, Z.; Tucker, R. Residential Satisfaction in Low-Density Australian Suburbs: The Impact of Social and Physical Context on Neighbourhood Contentment. J. Environ. Psychol. 2018, 56, 36–45. [Google Scholar] [CrossRef]
- Hong, A.; Sallis, J.F.; King, A.C.; Conway, T.L.; Saelens, B.; Cain, K.; Fox, E.H.; Frank, L.D. Linking Green Space to Neighborhood Social Capital in Older Adults: The Role of Perceived Safety. Soc. Sci. Med. 2018, 207, 38–45. [Google Scholar] [CrossRef]
- Locke, D.H.; Han, S.; Kondo, M.C.; Murphy-Dunning, C.; Cox, M. Did Community Greening Reduce Crime? Evidence from New Haven, CT, 1996–2007. Landsc. Urban Plan. 2017, 161, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Harvey, C.; Aultman-Hall, L.; Hurley, S.E.; Troy, A. Effects of Skeletal Streetscape Design on Perceived Safety. Landsc. Urban Plan. 2015, 142, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Nakamura, U. Landmark Selection in the Environment: Relationships with Object Characteristics and Sense of Direction. Spat. Cogn. Comput. 2011, 12, 1–22. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Shogren, C.; Paine, T.D. Economic Benefit for Cuban Laurel Thrips Biological Control. J. Econ. Èntomol. 2016, 109, 93–99. [Google Scholar] [CrossRef]
- Ryder, C.; Moore, G. The Arboricultural and Economic Benefits of Formative Pruning Street Trees. Arboric. Urban For. 2013, 39, 17–24. [Google Scholar] [CrossRef]
- Kovacs, K.F.; Haight, R.G.; Jung, S.; Locke, D.H.; O’Neil-Dunne, J. The Marginal Cost of Carbon Abatement from Planting Street Trees in New York City. Ecol. Econ. 2013, 95, 1–10. [Google Scholar] [CrossRef]
- Nordman, E.E.; Isely, E.; Isely, P.; Denning, R. Benefit-Cost Analysis of Stormwater Green Infrastructure Practices for Grand Rapids, Michigan, USA. J. Clean. Prod. 2018, 200, 501–510. [Google Scholar] [CrossRef]
- Sydnor, T.D.; Subburayalu, S.K. Should We Consider Expected Environmental Benefits When Planting Larger or Smaller Tree Species? Arboric. Urban For. 2011, 37, 6. [Google Scholar] [CrossRef]
- Donovan, G.H.; Butry, D.T. Trees in the City: Valuing Street Trees in Portland, Oregon. Landsc. Urban Plan. 2010, 94, 77–83. [Google Scholar] [CrossRef]
- Ng, W.-Y.; Chau, C.; Powell, G.; Leung, T.-M. Preferences for Street Configuration and Street Tree Planting in Urban Hong Kong. Urban For. Urban Green. 2015, 14, 30–33. [Google Scholar] [CrossRef]
- McCabe, J. A Summary and Forecast of Demand for Municipal Street Tree Service on Staten Island, New York. J. Arboric. 2001, 27, 4. [Google Scholar] [CrossRef]
- McCabe, J. A Discrete Event Simulation of a Municipal Street Tree Maintenance Operation. J. Arboric. 2002, 28, 6. [Google Scholar] [CrossRef]
- Doherty, K.; Ryan, H.D.; Bloniarz, D. Tree Wardens and Utility Arborists: A Management Team Working for Street Trees in Massachusetts. J. Arboric. 2000, 26, 10. [Google Scholar] [CrossRef]
- Ames, B.; Dewald, S. Working Proactively with Developers to Preserve Urban Trees. Cities 2003, 20, 95–100. [Google Scholar] [CrossRef]
- Gwedla, N.; Shackleton, C.M. The Development Visions and Attitudes towards Urban Forestry of Officials Responsible for Greening in South African Towns. Land Use Policy 2015, 42, 17–26. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Ricard, R.M.; Kenney, A.; Randrup, T.B. Defining Urban Forestry—A Comparative Perspective of North America and Europe. Urban For. Urban Green. 2006, 4, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Scharenbroch, B.C.; Carter, D.; Bialecki, M.; Fahey, R.; Scheberl, L.; Catania, M.; Roman, L.A.; Bassuk, N.; Harper, R.W.; Werner, L.; et al. A Rapid Urban Site Index for Assessing the Quality of Street Tree Planting Sites. Urban For. Urban Green. 2017, 27, 279–286. [Google Scholar] [CrossRef]
- Sæbø, A.; Benedikz, T.; Randrup, T.B. Selection of Trees for Urban Forestry in the Nordic Countries. Urban For. Urban Green. 2003, 2, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Petri, A.C.; Wilson, B.; Koeser, A. Planning the Urban Forest: Adding Microclimate Simulation to the Planner’s Toolkit. Land Use Policy 2019, 88, 104117. [Google Scholar] [CrossRef]
- Hilde, T.; Paterson, R. Integrating Ecosystem Services Analysis into Scenario Planning Practice: Accounting for Street Tree Benefits with i-Tree Valuation in Central Texas. J. Environ. Manag. 2014, 146, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; McBride, J.R. Restoration of the Urban Forests of Tokyo and Hiroshima following World War II. Urban For. Urban Green. 2006, 5, 155–168. [Google Scholar] [CrossRef]
- Basu, S.; Nagendra, H. The Street as Workspace: Assessing Street Vendors’ Rights to Trees in Hyderabad, India. Landsc. Urban Plan. 2020, 199, 103818. [Google Scholar] [CrossRef]
- Graça, M.; Queirós, C.; Farinha-Marques, P.; Cunha, M. Street Trees as Cultural Elements in the City: Understanding How Perception Affects Ecosystem Services Management in Porto, Portugal. Urban For. Urban Green. 2018, 30, 194–205. [Google Scholar] [CrossRef]
- Jack-Scott, E.; Piana, M.; Troxel, B.; Murphy-Dunning, C.; Ashton, M. Stewardship Success: How Community Group Dynamics Affect Urban Street Tree Survival and Growth. Arboric. Urban For. 2013, 39, 8. [Google Scholar] [CrossRef]
- Hunter, M.R. Impact of Ecological Disturbance on Awareness of Urban Nature and Sense of Environmental Stewardship in Residential Neighborhoods. Landsc. Urban Plan. 2011, 101, 131–138. [Google Scholar] [CrossRef]
- Marshall, A.J.; Grose, M.J.; Williams, N.S. Of Mowers and Growers: Perceived Social Norms Strongly Influence Verge Gardening, a Distinctive Civic Greening Practice. Landsc. Urban Plan. 2020, 198, 103795. [Google Scholar] [CrossRef]
- Moskell, C.; Bassuk, N.; Allred, S.; MacRae, P. Engaging Residents in Street Tree Stewardship: Results of a Tree Watering Outreach Intervention. Arboric. Urban For. 2016, 42, 17. [Google Scholar] [CrossRef]
- De Guzman, E.; Malarich, R.; Large, L.; Danoff-Burg, S. Inspiring Resident Engagement: Identifying Street Tree Stewardship Participation Strategies in Environmental Justice Communities Using a Community-Based Social Marketing Approach. Arboric. Urban For. 2018, 44, 16. [Google Scholar] [CrossRef]
- Pham, T.-T.; Apparicio, P.; Landry, S.; Séguin, A.-M.; Gagnon, M. Predictors of the Distribution of Street and Backyard Vegetation in Montreal, Canada. Urban For. Urban Green. 2013, 12, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Gwedla, N.; Shackleton, C.M. Population Size and Development History Determine Street Tree Distribution and Composition within and between Eastern Cape Towns, South Africa. Urban For. Urban Green. 2017, 25, 11–18. [Google Scholar] [CrossRef]
- Kolosna, C.; Spurlock, D. Uniting Geospatial Assessment of Neighborhood Urban Tree Canopy with Plan and Ordinance Evaluation for Environmental Justice. Urban For. Urban Green. 2019, 40, 215–223. [Google Scholar] [CrossRef]
- Laurian, L. Planning for Street Trees and Human–Nature Relations: Lessons from 600 Years of Street Tree Planting in Paris. J. Plan. Hist. 2019, 18, 282–310. [Google Scholar] [CrossRef]
- Frumkin, H.; Gregory, N.; Bratman, G.N.; Breslow, S.J.; Cochran, B.; Kahn, P.H., Jr.; Lawler, J.J.; Levin, P.S.; Tandon, P.S.; Varanasi, U.; et al. Nature Contact and Human Health: A Research Agenda. Environ. Health Perspect. 2017, 125, 075001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konijnendijk, C. The 3-30-300 Rule for Urban Forestry and Greener Cities. Biophilic Cities J. 2022, 4, 2. [Google Scholar]
- Tan, P.Y.; Zhang, J.; Masoudi, M.; Alemu, J.B.; Edwards, P.J.; Grêt-Regamey, A.; Richards, D.R.; Saunders, J.; Song, X.P.; Wong, L.W. A Conceptual Framework to Untangle the Concept of Urban Ecosystem Services. Landsc. Urban Plan. 2020, 200, 103837. [Google Scholar] [CrossRef]
- Raum, S.; Hand, K.; Hall, C.; Edwards, D.; O’Brien, L.; Doick, K. Achieving Impact from Ecosystem Assessment and Valuation of Urban Greenspace: The Case of i-Tree Eco in Great Britain. Landsc. Urban Plan. 2019, 190, 103590. [Google Scholar] [CrossRef]
- Barona, C.O.; Wolf, K.; Kowalski, J.M.; Kendal, D.; Byrne, J.A.; Conway, T.M. Diversity in Public Perceptions of Urban Forests and Urban Trees: A critical Review. Landsc. Urban Plan. 2022, 226, 104466. [Google Scholar] [CrossRef]
- Angel, S. Planet of Cities; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2012. [Google Scholar]
- Angelo, H. How Green Became Good: Urbanized Nature and the Making of Cities and Citizens; University of Chicago Press: Chicago, IL, USA, 2022. [Google Scholar]
- US National Library of Medicine and National Institutes of Health. PMC Journal List [A-B].” PMC Journal List. 2021. Available online: https://www.ncbi.nlm.nih.gov/pmc/journals/ (accessed on 1 August 2022).
- Taylor & Francis Group. Abstracting & Indexing. Abstracting and Indexing. 2021. Available online: https://librarianresources.taylorandfrancis.com/services-support/discoverability/abstracting-and-indexing/ (accessed on 1 August 2022).
- Marshall, I.J.; Wallace, B.C. Toward Systematic Review Automation: A Practical Guide to Using Machine Learning Tools in Research Synthesis. Syst. Rev. 2019, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
Dimension | Research Theme | Research Topic | Emergent Subtopics | Emergent Challenges—Opportunities for Future Research |
---|---|---|---|---|
Structure Inherent characteristics and physical qualities of urban tree populations, largely encompassed by spatial location (including distribution or spatial arrangement and density or aggregate arrangement in relation to other trees or objects), as well as physiological features (species diversity, size or age, condition) [6,7]. | Street tree populations the amount, distribution, and composition of leaf area over street and sidewalk surfaces [57] | tree inventory methods | satellite-supported; airplane-supported; on-the-ground photography/scanning; field inventory | digital divide between locales |
establishment and growth | soil amendments; leaf–gas exchange; post-transplant growth | coupled biophysical and human factors | ||
survival and mortality | longevity; rates over time | coupled biophysical and human factors | ||
disease/pest management | first reports; impact evaluations | efficacy of nonchemical pest control | ||
Function Manners in which structure influences ecological processes, which in turn affects environmental quality and the ability of urban trees to provide beneficial functions [7]. | Supporting ecosystem functions/services the services necessary for the production of all other ecosystem services [58]. | biodiversity | species density, distribution, composition, diversity | species diversity, risks of large-scale devastation |
habitat formation | avian and arthropod populations | richness and abundance of organisms reliant on street trees | ||
nitrogen and carbon cycles | nutrient production and cycling | limited research | ||
Regulating ecosystem functions/services the benefits people obtain from the regulation of ecosystem processes [58] | air quality | particulate matter; volatile organic compounds; ozone; carbon monoxide; human health outcomes | urban form; planting pattern; air flow | |
carbon sequestration | biomass estimates | loss, release, and net carbon sequestration | ||
cooling | human thermal comfort; air/surface temperature; shading; evapotranspiration | urban form; context | ||
stormwater management | pit/filter design; infiltration/water quantity and quality | species suitability/structure; impacts on health and growth | ||
Provisioning ecosystem functions/services the products obtained from ecosystems [58] | edible food/fruit | pharmaceutical and nutritional benefit | limited research | |
construction material | pruning waste | |||
Cultural ecosystem functions/services the nonmaterial benefits people obtain from ecosystems through spiritual enrichment, cognitive development, reflection, recreation, and esthetic experiences [58] | whole-body health outcomes | hypertension; depression; well-being; quality of life; birth outcomes | individual and geographic variation | |
safety | vehicle crashes; crime; wayfinding | |||
physical activity | walking; cycling | |||
social contact | social cohesion; resident satisfaction | |||
cobenefits | any combination of provisioning, regulating, and cultural functions/services | |||
Value Benefits and costs derived from the urban forest (McPherson et al. 1997) | Economic valuation monetary expressions of value in terms of assets, costs, and capital investment [59] | economic evaluation | cost–benefit; cost effectiveness; property/rent values | modeling costs/benefits |
finance administration | projections of workforce and financial demands | limited research, budgeting within a system designed for grey infrastructure | ||
Social values and governance nonmonetary expressions of value in terms of norms of law, public interest, or other social processes [60] | policy/planning paradigms | management actor perspectives; planning and policy frameworks; preservation policy | participatory planning processes | |
public interest | tree care by private individuals and groups; willingness to pay; tree preferences | procedural justice | ||
environmental (in)justice | distributional justice; recognition justice | optimize benefits alongside systemic biases |
No. of Publications | ||||
---|---|---|---|---|
Journal | 1997–2007 | 2008–2018 | 2019–2020 | Total (n, %) |
Urban Forestry & Urban Greening | 20 | 78 | 10 | 108, 25.2% |
Arboriculture & Urban Forestry | 9 | 36 | 2 | 47, 10.9% |
Landscape and Urban Planning | 2 | 33 | 8 | 43, 10.0% |
Journal of Arboriculture* | 25 | 0 | 0 | 25, 5.8% |
Building and Environment | 1 | 6 | 3 | 10, 2.3% |
Inventory Method | Definition (Based on Nielsen et al. 2014 [94]) | Inventory Description |
---|---|---|
Satellite-supported inventory method | use of scanners or cameras to collect information from large areas via satellite | Landsat ETM+ and Quickbird (Small et al. 2006), Landsat-9 and MODIS [98,99,100,101] |
Airplane-supported inventory method | use of scanners or cameras to collect information from large areas via airplane | airborne LIDAR; airborne laser scanning [102,103,104] |
On-the-ground scanning/photography | covers smaller areas of a single tree or small patch of trees); is more time consuming, yet offers a much richer scale of detail and precision than is permissible using high-resolution imagery | Google Street View; mobile laser scanning; terrestrial laser scanning; extracting mobile LiDAR point clouds [105,106,107,108,109,110,111,112,113,114,115,116,117,118] |
Field survey | based on both the measurements and/or inspection of individual trees; while labor-intensive and time-consuming, this method can speak directly to the predictors or confounders of local conditions (human or biophysical) that impact street tree structure, function, value, and management regimes | led by volunteer participants or citizen scientists; docu-menting multi-stem DBH; documenting host trees for invasive insects across re-gional urban forests; docu-menting street tree composi-tion of industrial land uses, or land used for manufac-turing, public utilities, warehouses, or similar commercial operations; documenting post-storm damage to urban trees [119,120,121,122,123,124,125] |
Cooling Mechanism | Context | Geographic Distribution | Select Citation(s) |
---|---|---|---|
Shading | improve building energy efficiency | Manchester (U.K.), Phoenix, Arizona (U.S.) | Skelhom et al. 2016, Wang et al. 2016, Armson et al. 2013 |
shade cover in street canyons | Boston, MA (U.S.), Singapore, Hong Kong (China) | Li et al. 2018, Gong et al. 2018, Richards and Edwards 2017 | |
UV protection for school children | Australia | White et al. 2017 | |
shade cover for pedestrians | Pécs (Hungary) | Kántor et al. 2018 | |
improve pavement performance | Modesto, California (U.S.) | McPherson and Muchnick 2005 | |
Air/surface temperature | variation among street tree species | Dresden (Germany), Wollongong, New South Wales (Australia) | Aguiar et al. 2014, Gillner et al. 2015, Maando et al. 2019 |
variation between vegetation and urban morphology | Manchester (U.K.), Berlin, Cologne (Germany) | Hall et al. 2012, Berger et al. 2017 | |
variation due to street canyon and planting composition | Tel Aviv (Israel), Gothenburg (Sweden) | Shashua-Bar and Hoffman 2003, Konarska et al. 2016 | |
variations in microclimate | Tel Aviv (Israel) | Shashua-Bar et al. 2010, Takebayashi et al. 2014 | |
variation between sidewalks and roadways | n/a | Wang 2014 | |
variation between street tree size and spacing | Montreal, Quebec (Canada) | Wang et al. 2016 | |
variation between streets and courtyards | Tel Aviv (Israel) | Shashua-Bar and Hoffman 2004 | |
Evapo- transpiration | variation among growing conditions | Munich (Germany) | Rahman et al. 2013 |
variation among planting compositions | Sodegaura (Japan) | Teshirogi et al. 2020 | |
variations in microclimate | Munich (Germany) | Rahman et al. 2017 | |
reduce damage to study specimens | Shenzhen (China) | Qiu et al. 2020 | |
Thermal comfort | variation based on combinations of air temperature, mean radiant temperature (MRT), wind speed and direction, short-and long-wave radiation | Saitama Prefecture (Japan), Utrect (Netherlands), Adelaide (Australia), Melbourne (Australia), Munich (Germany), Xi’an (China), Vancouver, British Columbia (Canada), Salt Lake City, Utah (U.S.), London (U.K.), Harbin (China) | Park 2012, Klemm 2015, Razzaghmanesh 2016, Sanusi 2016, Thom 2016, Park 2018, Rahman 2018, Yang 2018, Aminipouri 2019a, b, Park 2019, Krayenhoff 2020, Li 2020 |
calibrate human energy balance | Melbourne (Australia), Heilongjiang (China), Guangdong (China), Bangkok (Thailand) | Morakinyo 2016, Sanusi 2017, Zhao 2017, Zheng 2018, Srivanit 2020 | |
reduce heat stress | Sao Paulo (Brazil) | Johansson et al. 2013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coleman, A.F.; Harper, R.W.; Eisenman, T.S.; Warner, S.H.; Wilkinson, M.A. Street Tree Structure, Function, and Value: A Review of Scholarly Research (1997–2020). Forests 2022, 13, 1779. https://doi.org/10.3390/f13111779
Coleman AF, Harper RW, Eisenman TS, Warner SH, Wilkinson MA. Street Tree Structure, Function, and Value: A Review of Scholarly Research (1997–2020). Forests. 2022; 13(11):1779. https://doi.org/10.3390/f13111779
Chicago/Turabian StyleColeman, Alicia F., Richard W. Harper, Theodore S. Eisenman, Suzanne H. Warner, and Michael A. Wilkinson. 2022. "Street Tree Structure, Function, and Value: A Review of Scholarly Research (1997–2020)" Forests 13, no. 11: 1779. https://doi.org/10.3390/f13111779
APA StyleColeman, A. F., Harper, R. W., Eisenman, T. S., Warner, S. H., & Wilkinson, M. A. (2022). Street Tree Structure, Function, and Value: A Review of Scholarly Research (1997–2020). Forests, 13(11), 1779. https://doi.org/10.3390/f13111779