Assessment of a New Fire Risk Index for the Atlantic Forest, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Micrometeorological Data and Automatic Station A635
2.3. Fire Risk Index
2.4. Regression Model and Statistical Analysis
2.5. Fire Foci and Correlation Analysis
2.6. MRI-ESM2-0 Model—Intermediate Scenario (SSP4.5)
- ea = esTmin = Current water vapor pressure calculated from the saturation pressure esTmin (kPa);
- esAT = Water vapor saturation pressure calculated from the average air temperature of the MRI model (kPa);
- RAHMRI = Relative humidity estimated from the current and saturation pressure of water vapor (Equations (5) and (6)) (%);
- RAHMRI13h = Estimated relative humidity for 13 h (%).
3. Results
3.1. Meteorological Variables
3.2. Regression Model and Degree of Danger for the FIAF
4. Discussion
4.1. Meteorological Variables and Fire Risk Models
4.2. Future Analysis of FIAF in the Atlantic Forest
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grace, J.; Malhi, Y.; Higuchi, N.; Meir, P. Productivity of tropical rain forests. In Terrestrial Global Productivity; Roy, J., Saugier, B., Mooney, H.A., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 401–426. [Google Scholar]
- Grelle, C.E.; Rajão, H.; Marques, M. The Future of the Brazilian Atlantic Forest. In The Atlantic Forest; Springer: Cham, Switzerland, 2021; pp. 487–503. [Google Scholar]
- Silva Junior, C.A.; Teodoro, P.E.; Delgado, R.C.; Pereira, L.; Teodoro, R.; Lima, M.; de Andréa Pantaleão, A.; Rojo Baio, F.H.; Brito De Azevedo, G.; Taís De Oliveira, G.; et al. Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Sci. Rep. 2020, 123, 16246. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.L.F.; Delgado, R.C.; Teodoro, P.E.; Pereira, M.G.; Correia, T.P.; de Mendonça, B.A.F.; Ávila Rodrigues, R.D. Occurrence of fire foci under different land uses in the State of Amazonas during the 2005 drought. Environ. Dev. Sustain. 2018, 21, 2707–2720. [Google Scholar] [CrossRef]
- Andrade, C.F.; Delgado, R.C.; Barbosa, M.L.F.; Teodoro, P.E.; da Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Fire regime in Southern Brazil driven by atmospheric variation and vegetation cover. Agric. For. Meteorol. 2020, 295, 108194. [Google Scholar] [CrossRef]
- Barbosa, M.L.F.; Delgado, R.C.; de Andrade, C.F.; Teodoro, P.E.; Junior, C.A.S.; Wanderley, H.S.; Capristo-Silva, G.F. Recent trends in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environ. Dev. 2021, 39, 100648. [Google Scholar] [CrossRef]
- Santos, R.O.; Delgado, R.C.; Vilanova, R.S.; de Santana, R.O.; de Andrade, C.F.; Teodoro, P.E.; Silva Junior, C.A.; Capristo-Silva, G.F.; Lima, M. NMDI application for monitoring different vegetation covers in the Atlantic Forest biome, Brazil. Weather Clim. Extrem. 2021, 33, 100329. [Google Scholar] [CrossRef]
- Teodoro, P.E.; da Silva Junior, C.A.; Delgado, R.C.; Lima, M.; Teodoro, L.P.R.; Baio, F.H.R.; de Oliveira Sousa Azevedo, G.T.; de Andréa Pantaleão, A.; Capristo-Silva, G.F.; Facco, C.U. Twenty-year impact of fire foci and its relationship with climate variables in Brazilian regions. Environ. Monit. Assess. 2022, 194, 90. [Google Scholar] [CrossRef] [PubMed]
- Jesus, C.S.L.; Delgado, R.C.; Wanderley, H.S.; Teodoro, P.E.; Pereira, M.G.; Lima, M.; de Ávila Rodrigues, R.; da Silva Junior, C.A. Fire risk associated with landscape changes, climatic events and remote sensing in the Atlantic Forest using ARIMA model. Remote Sens. Appl. Soc. Environ. 2022, 26, 100761. [Google Scholar] [CrossRef]
- Rodrigues, E.L.; Jacobi, C.M.; Figueira, J.E.C. Wildfires and their impact on the water supply of a large neotropical metropolis: A simulation approach. Sci. Total Environ. 2019, 651, 1261–1271. [Google Scholar] [CrossRef]
- Aaltonen, H.; Köster, K.; Köster, E.; Berninger, F.; Zhou, X.; Karhu, K.; Pumpanen, J. Forest fires in Canadian permafrost region: The combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 2019, 143, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Benfica, N.S.; Silva, D.P.; Figueiredo, R.M.; Brunow, J.C. Validação do Produto de Área Queimada MCD64A1 de Resolução Moderada. Braz. J. Dev. 2020, 6, 91164–91171. [Google Scholar] [CrossRef]
- Aximoff, I.; Nunes-Freitas, A.F.; Braga, J.M.A. Regeneração natural pós-fogo nos campos de altitude no Parque Nacional do Itatiaia, sudeste do Brasil. Oecol. Aust. 2016, 20, 62–80. [Google Scholar] [CrossRef] [Green Version]
- Dietze, E.; Mangelsdorf, K.; Andreev, A.; Karger, C.; Hopmans, E.C.; Schreuder, L.T.; Sachse, D.; Rach, O.; Nowaczyk, N.; Herzschuh, U. Anhydrosugars in Sediments pf Lake El’gygytgyn-Fire Regime Reconstructions of Ne Siberia during the Last Two Interglacials. In Proceedings of the 29th International Meeting on Organic Geochemistry, Gothenburg, Sweden, 1–6 September 2019; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2019; Volume 2019, pp. 1–2. [Google Scholar]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Sun, Q.; Burrell, A.; Barrett, K.; Kukavskaya, E.; Buryak, L.; Kaduk, J.; Baxter, R. Climate variability may delay post-fire recovery of boreal forest in southern Siberia. Russia. Remote Sens. 2021, 13, 2247. [Google Scholar] [CrossRef]
- Troumbis, A.Y.; Kalabokidis, K.; Palaiologou, P. Diverging rationalities between forest fire management services and the general public after the 21st-century mega-fires in Greece. J. For. Res. 2022, 33, 553–564. [Google Scholar] [CrossRef]
- Varga, K.; Jones, C.; Trugman, A.; Carvalho, L.M.; McLoughlin, N.; Seto, D.; Thompson, C.; Daum, K. Megafires in a Warming World: What Wildfire Risk Factors Led to California’s Largest Recorded Wildfire. Fire 2022, 5, 16. [Google Scholar] [CrossRef]
- Chelli, S.; Maponi, P.; Campetella, G.; Monteverde, P.; Foglia, M.; Paris, E.; Lolis, A.; Panagopoulos, T. Adaptation of the Canadian fire weather index to Mediterranean forests. Nat. Hazards 2015, 75, 1795–1810. [Google Scholar] [CrossRef]
- Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest fire risk prediction: A spatial deep neural network-based framework. Remote Sens. 2021, 13, 2513. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Küçük, Ö. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Inform. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Bemmerzouk, A.M.; Mitsopoulos, I.D. Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol. Appl. 2011, 18, 83–93. [Google Scholar] [CrossRef]
- Carvalho, A.; Flannigan, M.D.; Logan, K.; Miranda, A.I.; Borrego, C. Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System. Int. J. Wildland Fire 2008, 17, 328–338. [Google Scholar] [CrossRef]
- Masinda, M.M.; Li, F.; Qi, L.; Sun, L.; Hu, T. Forest fire risk estimation in a typical temperate forest in Northeastern China using the Canadian forest fire weather index: Case study in autumn 2019 and 2020. Nat. Hazards 2022, 111, 1085–1101. [Google Scholar] [CrossRef] [PubMed]
- Sharples, J.J.; McRae, R.H.; Weber, R.O.; Gill, A.M. A simple index for assessing fire danger rating. Environ. Model. Softw. 2009, 24, 764–774. [Google Scholar] [CrossRef]
- Nunes, J.R.S.; Soares, R.V.; Batista, A.C. FMA+-Um novo índice de perigo de incêndios florestais para o estado do Paraná, Brasil. Floresta 2006, 36, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Torres, F.T.P.; Lima, G.S.; Martins, S.V.; Valverde, S.R. Analysis of efficiency of fire danger indices in forest fire prediction. Rev. Arvore 2017, 41, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Eugenio, F.C.; dos Santos, A.R.; Pedra, B.D.; Pezzopane, J.E.M.; da Silva, S.D.P.; Fantinel, R.A. System for calculating and defining classes in modified Monte Alegre Formula-FMA+ Sisclass. Floresta 2021, 52, 131–139. [Google Scholar] [CrossRef]
- Lima, M.B.; Costa, G.B.; Pereira, W.D.S.; Da Silva, D.T.C.; Matias, L.V.D.S.; Macambira, A.C.D.S.; Almada, N.B. Aspectos Sazonais de um Índice de Risco de Incêndios Florestais na Região Norte do Brasil por Meio de Dados Meteorológicos. Biodivers. Bras.-BioBrasil 2021, 11, 46–59. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: AR6 Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Issues 1–151). 2021. Available online: https://archive.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf (accessed on 15 May 2022).
- Touma, D.; Stevenson, S.; Lehner, F.; Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 2021, 12, 212. [Google Scholar] [CrossRef] [PubMed]
- Burrell, A.L.; Sun, Q.; Baxter, R.; Kukavskaya, E.A.; Zhila, S.; Shestakova, T.; Rogers, B.M.; Kaduk, J.; Barrett, K. Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia. Sci. Total Environ. 2022, 831, 154885. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Andrade, M.D.; Delgado, R.C.; De Ávila Rodrigues, R.; Teodoro, P.E.; Da Silva Junior, C.A.; Pereira, M.G. Evaluation of the MOD11A2 product for canopy temperature monitoring in the Brazilian Atlantic Forest. Environ. Monit. Assess. 2021, 193, 45. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and drainage paper No. 56. Rome Food Agric. Organ. United Nations 1998, 56, e156. Available online: http://www.climasouth.eu/sites/default/files/FAO%2056.pdf (accessed on 3 May 2022).
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org/ (accessed on 31 October 2022).
- Angstrom, A. Riskerna for skogsbrand och deras beroende av vader och klimat (The risks for forest fires and their relation to weather and climate). Svenska Skogsvirdsforeningens Tidskrift 1942, 40, 323–343. [Google Scholar]
- Soares, R.V. Índices de perigo de incêndio. Floresta 1972, 3, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. 2019, 97, 931–965. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Cegatta, I.R.; Vieira, L.A.A.; Pavani, R.F.; de Mattos, E.M.; Sentelhas, P.C.; Stape, J.L.; Soares, R.V. Forest fire danger: Application of Monte Alegre Formula and assessment of the historic for Piracicaba, SP. Sci. For. 2014, 42, 521–532. [Google Scholar]
- Instituto Nacional de Meteorologia—INMET. 2022. Available online: https://portal.inmet.gov.br/noticias/inmet-aponta-que-a-%C3%BAltima-d%C3%A9cada-foi-a-mais-quente-no-brasil (accessed on 3 May 2022).
- National Oceanic and Atmospheric Administration—NOAA. El Niño/Southern Oscillation (ENSO). Available online: https://www.ncei.noaa.gov/access/monitoring/enso/ (accessed on 3 May 2022).
- Instituto Nacional de Meteorologia—INMET. 2022. Available online: https://portal.inmet.gov.br/noticias/comparativo-de-chuvas-em-novembro-2020-e-2021-no-brasil (accessed on 3 May 2022).
- White, B.L.A. Incêndios Florestais no Parque Nacional Serra de Itabaiana-Sergipe. [Dissertação] São Cristóvão: Universidade Federal de Sergipe. 2010. Available online: https://ri.ufs.br/handle/riufs/4175 (accessed on 3 May 2022).
- Stokkenes, S.; Strand, R.D.; Kristensen, L.M.; Log, T. Validation of a Predictive Fire Risk Indication Model using Cloud-based Weather Data Services. Procedia Comput. Sci. 2021, 184, 186–193. [Google Scholar] [CrossRef]
- Srock, A.F.; Charney, J.J.; Potter, B.E.; Goodrick, S.L. The hot-dry-windy index: A new fire weather index. Atmosphere 2018, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Mandal, A.; Nykiel, G.; Strzyzewski, T.; Kochanski, A.; Wrońska, W.; Gruszczynska, M.; Figurski, M. High-resolution fire danger forecast for Poland based on the Weather Research and Forecasting Model. Int. J. Wildland Fire 2021, 31, 149–162. [Google Scholar] [CrossRef]
- Nainggolan, H.A.; Veanti, D.P.O.; Akbar, D. Utilisation of nasa-gfwed and firms satellite data in determining the probability of hotspots using the fire weather index (fwi) in ogan komering ilir regency, south sumatra. Int. J. Remote Sens. Earth Sci. 2021, 17, 85–98. [Google Scholar] [CrossRef]
- Santana, R.O.; Delgado, R.C.; Schiavetti, A. The past, present and future of vegetation in the Central Atlantic Forest Corridor, Brazil. Remote Sens. Appl. Soc. Environ. 2020, 20, 100357. [Google Scholar] [CrossRef]
- Pereira, R.M.S.; Wanderley, H.S.; Delgado, R.C. Homogeneous regions for rainfall distribution in the city of Rio de Janeiro associated with the risk of natural disasters. Nat. Hazards 2022, 111, 333–351. [Google Scholar] [CrossRef]
- Panisset, J.S.; Libonati, R.; Gouveia, C.M.P.; Machado-Silva, F.; França, D.A.; França, J.R.A.; Peres, L.F. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. Int. J. Climatol. 2018, 38, 1096–1104. [Google Scholar] [CrossRef]
- Semenova, I.; Sumak, K. Dynamics of fire weather conditions in the mixed forest areas of Belarus and Ukraine under recent climate change. Geofizika 2022, 39, 71–84. [Google Scholar] [CrossRef]
- Delgado, R.C.; de Santana, R.O.; Gelsleichter, Y.A.; Pereira, M.G. Degradation of South American biomes: What to expect for the future? Environ. Impact Assess. Rev. 2022, 96, 106815. [Google Scholar] [CrossRef]
- Calheiros, T.; Pereira, M.G.; Nunes, J.P. Assessing impacts of future climate change on extreme fire weather and pyro-regions in Iberian Peninsula. Sci. Total Environ. 2021, 754, 142233. [Google Scholar] [CrossRef]
- Perry, M.C.; Vanvyve, E.; Betts, R.A.; Palin, E.J. Past and future trends in fire weather for the UK. Nat. Hazards Earth Syst. Sci. 2022, 22, 559–575. [Google Scholar] [CrossRef]
FIAF Value (2 and 10 m) | Degree of Danger |
---|---|
≤5 | Small |
5–15 | Average |
15–25 | High |
25–45 | Very high |
> 45 | Extreme |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, R.C.; Wanderley, H.S.; Pereira, M.G.; Almeida, A.Q.d.; Carvalho, D.C.d.; Lindemann, D.d.S.; Zonta, E.; Menezes, S.J.M.d.C.d.; Santos, G.L.d.; Santana, R.O.d.; et al. Assessment of a New Fire Risk Index for the Atlantic Forest, Brazil. Forests 2022, 13, 1844. https://doi.org/10.3390/f13111844
Delgado RC, Wanderley HS, Pereira MG, Almeida AQd, Carvalho DCd, Lindemann DdS, Zonta E, Menezes SJMdCd, Santos GLd, Santana ROd, et al. Assessment of a New Fire Risk Index for the Atlantic Forest, Brazil. Forests. 2022; 13(11):1844. https://doi.org/10.3390/f13111844
Chicago/Turabian StyleDelgado, Rafael Coll, Henderson Silva Wanderley, Marcos Gervasio Pereira, André Quintão de Almeida, Daniel Costa de Carvalho, Douglas da Silva Lindemann, Everaldo Zonta, Sady Júnior Martins da Costa de Menezes, Gilsonley Lopes dos Santos, Romário Oliveira de Santana, and et al. 2022. "Assessment of a New Fire Risk Index for the Atlantic Forest, Brazil" Forests 13, no. 11: 1844. https://doi.org/10.3390/f13111844
APA StyleDelgado, R. C., Wanderley, H. S., Pereira, M. G., Almeida, A. Q. d., Carvalho, D. C. d., Lindemann, D. d. S., Zonta, E., Menezes, S. J. M. d. C. d., Santos, G. L. d., Santana, R. O. d., Souza, R. S. d., & Santos, O. A. Q. d. (2022). Assessment of a New Fire Risk Index for the Atlantic Forest, Brazil. Forests, 13(11), 1844. https://doi.org/10.3390/f13111844