The Polish Provenances of European Larch Overperform the Expected Growth Dynamics Indicated by the Sigmoid Model
Abstract
:1. Introduction
2. Materials and Methods
Provenance | Plot Number | Growth Model Parameters | Characteristic Values of the Growth Model Derivatives | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growth Rate | Upper Asymptote (cm2) | Inflexion Point (Stand Age) | Maximum Growth Rate (cm2 Year−1) | Maximum Growth Acceleration | |||||||||
(cm2 Year−2) | (Stand Age) | ||||||||||||
µ | σ | µ | σ | µ | σ | µ | σ | µ | σ | µ | σ | ||
Bliżyn | 2 | 0.100 | 0.0115 | 1083 | 117 | 36.4 | 4.63 | 27.0 | 0.20 | 1.04 | 0.13 | 23.1 | 3.11 |
Czerniejewo | 6 | 0.097 | 0.0095 | 946 | 274 | 35.5 | 5.27 | 22.7 | 6.41 | 0.85 | 0.26 | 21.8 | 4.61 |
Dąbrówki | 3 | 0.093 | 0.0066 | 1100 | 271 | 37.8 | 5.54 | 25.3 | 4.79 | 0.90 | 0.13 | 23.6 | 4.70 |
Góra Chełmowa | 2 | 0.132 | 0.0050 | 1347 | 293 | 32.3 | 1.72 | 44.2 | 7.96 | 2.24 | 0.32 | 22.3 | 1.34 |
Grójec-Mała Wieś | 3 | 0.110 | 0.0237 | 1318 | 170 | 36.1 | 6.39 | 35.6 | 4.98 | 1.53 | 0.54 | 23.7 | 3.71 |
Henryków | 4 | 0.101 | 0.0127 | 1295 | 377 | 38.6 | 5.41 | 32.1 | 7.34 | 1.23 | 0.22 | 25.4 | 3.96 |
Hołubla | 3 | 0.108 | 0.0014 | 1245 | 373 | 36.2 | 4.55 | 33.6 | 9.95 | 1.40 | 0.41 | 24.1 | 4.46 |
Kłodzko | 5 | 0.099 | 0.0121 | 1058 | 228 | 34.7 | 4.14 | 25.8 | 5.35 | 0.98 | 0.26 | 21.1 | 2.91 |
Konstancj. (Płonne) | 5 | 0.091 | 0.0126 | 1329 | 503 | 38.8 | 4.59 | 30.2 | 11.23 | 1.07 | 0.42 | 24.1 | 3.63 |
Konstancj. (Tomkowo) | 4 | 0.105 | 0.0075 | 941 | 440 | 33.0 | 5.18 | 24.4 | 10.39 | 0.98 | 0.38 | 20.5 | 4.93 |
Kowary | 5 | 0.105 | 0.0149 | 1173 | 260 | 36.7 | 5.09 | 30.8 | 7.92 | 1.26 | 0.43 | 23.9 | 4.31 |
Krościenko | 4 | 0.100 | 0.0069 | 722 | 168 | 32.4 | 4.30 | 17.8 | 3.29 | 0.68 | 0.11 | 19.2 | 3.55 |
Marcule | 5 | 0.107 | 0.0207 | 1136 | 205 | 35.6 | 2.25 | 31.0 | 11.29 | 1.35 | 0.79 | 22.9 | 1.36 |
Moskorzew | 4 | 0.097 | 0.0072 | 975 | 103 | 34.2 | 1.27 | 23.7 | 3.87 | 0.89 | 0.21 | 20.5 | 1.60 |
Myślibórz | 5 | 0.098 | 0.0216 | 1391 | 601 | 40.0 | 9.30 | 31.9 | 8.71 | 1.16 | 0.17 | 26.2 | 6.76 |
Pelplin | 5 | 0.106 | 0.0138 | 1035 | 223 | 35.3 | 3.59 | 27.0 | 5.54 | 1.10 | 0.26 | 22.7 | 2.26 |
Pilica | 5 | 0.102 | 0.0165 | 1164 | 978 | 36.3 | 11.18 | 27.4 | 19.09 | 1.01 | 0.56 | 23.1 | 9.33 |
Prószków | 5 | 0.108 | 0.0089 | 1035 | 512 | 32.2 | 4.57 | 28.2 | 15.27 | 1.19 | 0.70 | 19.9 | 4.75 |
Trębaczew | 3 | 0.097 | 0.0058 | 1143 | 321 | 35.2 | 5.25 | 27.5 | 6.58 | 1.02 | 0.22 | 21.6 | 4.61 |
Skarżysko | 5 | 0.098 | 0.0042 | 984 | 82 | 34.2 | 1.10 | 24.1 | 2.41 | 0.91 | 0.12 | 20.7 | 1.12 |
Szczytna Śląska | 3 | 0.096 | 0.0135 | 962 | 359 | 35.9 | 7.38 | 22.3 | 6.33 | 0.81 | 0.20 | 22.0 | 5.37 |
Mean | 86 | 0.101 | 0.0133 | 1106 | 391 | 35.6 | 5.29 | 27.7 | 9.39 | 1.09 | 0.44 | 22.5 | 4.34 |
Deterministic model: | |||||||||||||
Site index I | - | 0.107 | - | 584 | - | 34.5 | - | 15.7 | - | 0.65 | - | 22.3 | - |
Site index II | - | 0.108 | - | 411 | - | 34.5 | - | 11.1 | - | 0.46 | - | 22.3 | - |
Site index III | - | 0.109 | - | 281 | - | 34.8 | - | 7.7 | - | 0.32 | - | 22.8 | - |
3. Results
4. Discussion
4.1. Growth Dynamics among Larch Provenances
4.2. Expected Growth Dynamics
4.3. Final Remarks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological Maps for the Main European Woody Species. Data Br. 2017, 12, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Da Ronch, F.; Caudullo, G.; Tinner, W.; de Rigoln, D. Larix Decidua and Other Larches in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species. Publications Office of the European Union; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston, D., Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxemburg, 2016; pp. 108–110. [Google Scholar]
- Pâques, L.E.; Foffová, E.; Heinze, B.; Lelu-Walter, M.-A.; Liesebach, M.; Philippe, G. Larches (Larix Sp.). In Forest tree breeding in Europe. Managing Forest Ecosystems; Pâques, L., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 13–122. [Google Scholar]
- Weisgerber, H.; Sindelar, J. History, Results and Future Trends of Research and International Cooperation with European Larch (Larix Decidua Mill.). Silvae Genet. 1992, 41, 150–161. [Google Scholar]
- Schober, R. Ergebnisse von Lärchen-Art-Und Provenienzversuchen. Silvae Genet. 1958, 7, 137–154. [Google Scholar]
- Giertych, M. Polskie Rasy Sosny, Świerka i Modrzewia w Międzynarodowych Doświadczeniach Proweniencyjnych. Arbor. Kórnickie 1980, XXV, 135–160. [Google Scholar]
- Szymański, N.; Wilczyński, S. Radial Growth Response of European Larch Provenances to Interannual Climate Variation in Poland. Forests 2021, 12, 334. [Google Scholar] [CrossRef]
- Pödör, Z.; Manninger, M.; Jereb, L. Application of Sigmoid Models for Growth Investigations of Forest Trees. In Advanced Computational Methods for Knowledge Engineering; Springer: Cham, Switzerland, 2014; pp. 353–364. [Google Scholar]
- Colbert, J.J.; Schuckers, M.; Fekedulegn, D.; Rentch, J.; MacSiúrtáin, M.; Gottschalk, K. Individual Tree Basal-Area Growth Parameter Estimates for Four Models. Ecol. Modell. 2004, 174, 115–126. [Google Scholar] [CrossRef]
- Onofrio, L.; Hawley, G.; Leites, L.P. Ecological Genetics of Juglans Nigra: Differences in Early Growth Patterns of Natural Populations. Ecol. Evol. 2021, 11, 7399–7410. [Google Scholar] [CrossRef]
- Smith, B.C.; Bullock, B.P.; Isik, F.; McKeand, S.E. Modeling Genetic Effects on Growth of Diverse Provenances and Families of Loblolly Pine across Optimum and Deficient Nutrient Regimes. Can. J. For. Res. 2014, 44, 1453–1461. [Google Scholar] [CrossRef]
- Szymkiewicz, B. Modrzew. In Tablice Zasobności i Przyrostu Drzewostanów Ważniejszych Gatunków Drzew Leśnych; PWRiL: Warszawa, Polska, 2001; pp. 84–93. [Google Scholar]
- Pretzsch, H.; del Río, M.; Biber, P.; Arcangeli, C.; Bielak, K.; Brang, P.; Dudzinska, M.; Forrester, D.I.; Klädtke, J.; Kohnle, U.; et al. Maintenance of Long-Term Experiments for Unique Insights into Forest Growth Dynamics and Trends: Review and Perspectives. Eur. J. For. Res. 2019, 138, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Kocięcki, S. Wielkość i Przebieg Rocznego Przyrostu Wysokości Sadzonek Modrzewia Różnego Pochodzenia. Sylwan 1969, 113, 25–40. [Google Scholar]
- Rzeźnik, Z. Przydatność Hodowlana Krajowych Proweniencji Modrzewi. Pr. Kom. Nauk Rol. i Leśnych PTPN 1980, 50, 127–137. [Google Scholar]
- Rzeźnik, Z. Larch (Larix Decidua Mill.) of Polish Provenances on Experimental Areas in Poland. In Proceedings of the Ecology and Management of Larix Forests: A Look Ahead. Proceedings of an International Symposium, Whitefish, MT, USA, 5–9 October 1992. [Google Scholar]
- Matras, J. Badania Proweniencyjne Modrzewia Prowadzone Przez Instytut Badawczy Leśnictwa w Latach 1948-2000. Pr. Inst. Badaw. Leśnictwa, Ser. A 2001, 1, 41–63. [Google Scholar]
- Matras, J. Badania porównawcze populacyjnej i rodowej zmienności cech hodowlanych wybranych pochodzeń modrzewia europejskiego (Larix decidua Mill.). In Spraw; Naukowe IBL: Warszawa, Polska, 2006; pp. 1–105. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorczyk, A. Richards Plant Growth Model. J. Agron. Crop Sci. 1998, 181, 243–247. [Google Scholar] [CrossRef]
- Schober, R. Selbstverlag des Verfassers; Grünberg: Hessen, Germany, 1946. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Fundation for Statistical Computing: Vienna, Austria. Available online: http://www.r-project.org (accessed on 2 November 2022).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 2 November 2022).
- Szaban, J.; Kowalkowski, W.; Lacka, A.; Karaszewski, Z. Wood Density in European Larch (Larix Decidua Mill.) from Selected Provenances Grown at the Siemianice Forest Experimental Station. Drewno 2021, 63, 144–158. [Google Scholar] [CrossRef]
- Szaban, J.; Kowalkowski, W.; Jakubowski, M. Druckfestigkeit von Längstfasern Der Europäischen Larche (Larix Decidua Mill.) Verschiedener Provenienzen Auf Der Versuchsfläche Der LZD Siemianice. Ann. Warsaw Univ. Life Sci. SGGW. For. Wood Technol. 2013, 84, 2013–2216. [Google Scholar]
- Szaban, J.; Kowalkowski, W.; Jakubowski, M. Biegefestigkeit Vom Holz Der Europäischen Lärche (Larix Decidua Mill.) Auf Der Versuchsfläche Der Forstuntersuchungsanstalt LZD in Siemianice. Ann. Warsaw Univ. Life Sci. SGGW. For. Wood Technol. 2013, 84, 217–221. [Google Scholar]
- Rożkowski, R.; Chmura, D.J.; Chałupka, W.; Guzicka, M. Cechy Przyrostowe i Jakościowe Modrzewia Polskiego [Larix Decudua Subsp. Polonica (Racib.) Domin] z Góry Chełmowej w 37-Letnim Doświadczeniu Rodowym. Sylwan 2011, 155, 599–609. [Google Scholar] [CrossRef]
- Andrzejczyk, T.; Bellon, S. Wzrost i Jakość Polskich Pochodzeń Modrzewia w Wieku 30 Lat Na Powierzchni Proweniencyjnej w Rogowie. Sylwan 1999, 143, 5–19. [Google Scholar]
- Giertych, M. Summary of Results on European Larch (Larix Decidua Mill.) Height Growth in the IUFRO 1944 Provenance Experiment. Silvae Genet. 1979, 28, 244–256. [Google Scholar]
- Kowalczyk, J.; Matras, J. Wyniki Doświadczenia Proweniencyjnego z Modrzewiem Europejskim (Larix Decidua Mill.). Sylwan 1999, 143, 43–59. [Google Scholar]
- Krüger, I.; Sanders, T.G.M.; Potočić, N.; Ukonmaanaho, L.; Rautio, P. Increased Evidence of Nutrient Imbalances in Forest Trees across Europe (ICP Forests Brief No. 4). In Programme Co-Ordinating Centre of ICP Forests; Thünen Institute of Forest Ecosystems: online, 2020. [Google Scholar]
- Sardans, J.; Alonso, R.; Janssens, I.A.; Carnicer, J.; Vereseglou, S.; Rillig, M.C.; Fernández-Martínez, M.; Sanders, T.G.M.; Peñuelas, J. Foliar and Soil Concentrations and Stoichiometry of Nitrogen and Phosphorous across European Pinus Sylvestris Forests: Relationships with Climate, N Deposition and Tree Growth. Funct. Ecol. 2016, 30, 676–689. [Google Scholar] [CrossRef] [Green Version]
- Lukac, M.; Calfapietra, C.; Lagomarsino, A.; Loreto, F. Global Climate Change and Tree Nutrition: Effects of Elevated CO2 and Temperature. Tree Physiol. 2010, 30, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How Much Does Climate Change Threaten European Forest Tree Species Distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive Biodiversity-Productivity Relationship Predominant in Global Forests. Science 2016, 354, 119741. [Google Scholar] [CrossRef] [Green Version]
- Cleland, E.E. Biodiversity and Ecosystem Stability. Nat. Educ. Knowl. 2011, 3, 14. [Google Scholar]
- Dostálek, J.; Frantík, T.; Pospíšková, M.; Křížová, M. Population Genetic Structure and Delineation of Conservation Units in European Larch (Larix Decidua Mill.) across Its Native Range. Flora 2018, 246–247, 26–32. [Google Scholar] [CrossRef]
- de la Mata, R.; Hood, S.; Sala, A. Insect Outbreak Shifts the Direction of Selection from Fast to Slow Growth Rates in the Long-Lived Conifer Pinus Ponderosa. Proc. Natl. Acad. Sci. USA 2017, 114, 7391–7396. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, W.R.L.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; et al. Tree Mortality from Drought, Insects, and Their Interactions in a Changing Climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef]
- Krąpiec, M.; Zielski, A. Dendrochronologia; Wydawnictwo Naukowe PWN: Warszawa, Polska, 2009. [Google Scholar]
- Szeligowski, H. Proweniencyjne Różnice w Odporności Modrzewia Europejskiego (Larix Decidua Mill.) Na Suszę. Sylwan 2001, 145, 65–78. [Google Scholar]
- Andrzejczyk, T.; Bolibok, L.; Drozdowski, S.; Szeligowski, H. Polish Beech-Larch Stands: Their Structure, Productivity and Processes of Generation. For. Res. Pap. 2011, 72, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Brief History and Profile of Long-Term Growth and Yield Research. In Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2009; pp. 101–120. [Google Scholar]
- Bardgett, R.D.; Wardle, D.A.; Yeates, G.W. Linking Above-Ground and below-Ground Interactions: How Plant Responses to Foliar Herbivory Influence Soil Organisms. Soil Biol. Biochem. 1998, 30, 1867–1878. [Google Scholar] [CrossRef]
Variable | Source of Variation | df | SS | MS | F (P) |
---|---|---|---|---|---|
Growth rate | Provenance | 20 | 0.353 | 0.018 | 1.12 (0.36) |
Residual | 65 | 1.026 | 0.016 | ||
Total | 85 | 1.379 | |||
Upper asymptote (cm2) | Provenance | 20 | 1.999 | 0.099 | 0.91 (0.58) |
Residual | 65 | 7.137 | 0.110 | ||
Total | 85 | 9.136 | |||
Inflection point (stand age) | Provenance | 20 | 0.274 | 0.014 | 0.58 (0.91) |
Residual | 65 | 1.524 | 0.023 | ||
Total | 85 | 1.798 | |||
Maximum growth rate (cm2 year−1) | Provenance | 20 | 2.593 | 0.130 | 1.416 (0.15) |
Residual | 65 | 5.952 | 0.092 | ||
Total | 85 | 8.545 | |||
Maximum growth acceleration (cm2 year−2) | Provenance | 20 | 3.893 | 0.195 | 1.855 (0.03) |
Residual | 65 | 6.820 | 0.105 | ||
Total | 85 | 10.714 | |||
Maximum growth acceleration (stand age) | Provenance | 20 | 0.571 | 0.028 | 0.725 (0.79) |
Residual | 65 | 2.560 | 0.039 | ||
Total | 85 | 3.132 |
Variable | Provenances | Deterministic Model (Site Index I) | t P |
---|---|---|---|
Growth rate | 0.101 (−2.2962) | 0.107 (−2.2329) | 4.61 <0.01 |
Upper asymptote (cm2) | 1106 (6.9539) | 584 (6.3702) | 16.51 0.01 |
Inflection point (stand age) | 35.6 (3.5630) | 34.5 (3.5422) | 1.33 0.19 |
Maximum growth rate (cm2 year−1) | 27.7 (3.2714) | 15.7 (2.7511) | 15.22 <0.01 |
Maximum growth acceleration (cm2 year−2) | 1.09 (0.0204) | 0.65 (−0.4365) | 11.94 <0.01 |
Maximum growth acceleration (stand age) | 22.5 (3.093) | 22.3 (3.1028) | 0.46 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagiełło, R.; Łukowski, A.; Kowalkowski, W. The Polish Provenances of European Larch Overperform the Expected Growth Dynamics Indicated by the Sigmoid Model. Forests 2022, 13, 1852. https://doi.org/10.3390/f13111852
Jagiełło R, Łukowski A, Kowalkowski W. The Polish Provenances of European Larch Overperform the Expected Growth Dynamics Indicated by the Sigmoid Model. Forests. 2022; 13(11):1852. https://doi.org/10.3390/f13111852
Chicago/Turabian StyleJagiełło, Radosław, Adrian Łukowski, and Wojciech Kowalkowski. 2022. "The Polish Provenances of European Larch Overperform the Expected Growth Dynamics Indicated by the Sigmoid Model" Forests 13, no. 11: 1852. https://doi.org/10.3390/f13111852
APA StyleJagiełło, R., Łukowski, A., & Kowalkowski, W. (2022). The Polish Provenances of European Larch Overperform the Expected Growth Dynamics Indicated by the Sigmoid Model. Forests, 13(11), 1852. https://doi.org/10.3390/f13111852