A Model Combining Forest Environment Images and Online Microclimate Data Instead of On-Site Measurements to Predict Phytoncide Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Collection Methods
2.2.1. NVOCs
2.2.2. Microclimate Environments
2.2.3. The 360° Forest Images
2.2.4. AMOS
2.3. Data Analysis Methods
3. Results
3.1. Selection of Significant Visual Indicators That Can Be Extracted from Forest Images
3.2. Selection of Forest Photography Techniques to Increase Prediction Power
3.3. Selection of Significant AMOS Indicators to Replace On-Site Measured Microclimate Data
3.4. Derivation of a New Phytoncide-Prediction Equation Based on Selected Indicators
4. Discussion
4.1. Selection of Significant Visual Indicators That Can Be Extracted from Forest Images
4.2. Selection of Forest Photography Techniques to Increase Prediction Power
4.3. Selection of Significant AMOS Indicators to Replace On-Site Measured Microclimate Data
4.4. Derivation of a New Phytoncide-Prediction Equation Based on Selected Indicators
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Kawada, T.; Park, B.J.; et al. Effect of phytoncide from trees on human natural killer cell function. Int. J. Immunopathol. Pharmacol. 2009, 22, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Bach Pagès, A.; Peñuelas, J.; Clarà, J.; Llusià, J.; Campillo i López, F.; Maneja, R. How should forests be characterized in regard to human health? Evidence from Existing Literature. Int. J. Environ. Res. Public Health 2020, 17, 1027. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest volatile organic compounds and their effects on human health: A state-of-the-art review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef]
- Kim, S.E.; Memon, A.; Kim, B.Y.; Jeon, H.; Lee, W.K.; Kang, S.C. Gastroprotective effect of phytoncide extract from Pinus koraiensis pinecone in Helicobacter pylori infection. Sci. Rep. 2020, 10, 9547. [Google Scholar] [CrossRef]
- Woo, J.; Lee, C.J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 2020, 29, 120–129. [Google Scholar] [CrossRef]
- Dehsheikh, A.B.; Sourestani, M.M.; Dehsheikh, P.B.; Mottaghipisheh, J.; Vitalini, S.; Iriti, M. Monoterpenes: Essential oil components with valuable features. Mini Rev. Med. Chem. 2020, 20, 958–974. [Google Scholar] [CrossRef]
- Bach, A.; Yáñez-Serrano, A.M.; Llusià, J.; Filella, I.; Maneja, R.; Penuelas, J. Human breathable air in a Mediterranean forest: Characterization of monoterpene concentrations under the canopy. Int. J. Environ. Res. Public Health 2020, 17, 4391. [Google Scholar] [CrossRef]
- Ha, K.; Shin, W. Changes of the forest therapy paradigm in the post-corona era: Focusing on analysis of news search words related to forest therapy and COVID-19. J. Tour. Manag. Res. 2021, 25, 611–637. [Google Scholar]
- Roviello, V.; Roviello, G.N. Less COVID-19 deaths in southern and insular Italy explained by forest bathing, Mediterranean environment, and antiviral plant volatile organic compounds. Environ. Chem. Lett. 2022, 20, 7–17. [Google Scholar] [CrossRef]
- Miyama, T.; Tobita, H.; Uchiyama, K.; Yazaki, K.; Ueno, S.; Saito, T.; Matsumoto, A.; Kitao, M.; Izuta, T. Differences in monoterpene emission characteristics after ozone exposure between three clones representing major gene pools of Cryptomeria japonica. J. Agric. Meteorol. 2018, 74, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, S.-J.; Yuan, X.-Y.; Feng, Z.-Z. Emission characteristics of biogenic volatile compounds (BVOCs) from common greening tree species in Northern China and their correlations with photosynthetic parameters. Huanjing Kexue 2020, 41, 3518–3526. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Veromann-Jürgenson, L.; Ye, J.; Niinemets, Ü. Oak gall wasp infections of Quercus robur leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics. Plant Cell Environ. 2018, 41, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Nunes, T.; Pio, C. Emission of volatile organic compounds from portuguese Eucalyptus Forests. Chemosphere-Glob. Change Sci. 2001, 3, 239–248. [Google Scholar] [CrossRef]
- Laffineur, Q.; Aubinet, M.; Schoon, N.; Amelynck, C.; Müller, J.-F.; Dewulf, J.; Van Langenhove, H.; Steppe, K.; Šimpraga, M.; Heinesch, B. Isoprene and monoterpene emissions from a mixed temperate forest. Atmos. Environ. 2011, 45, 3157–3168. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Lun, X.; Fan, C.; Ma, W. Emission patterns of biogenic volatile organic compounds from dominant forest species in Beijing, China. J. Environ. Sci. 2020, 95, 73–81. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, G.; Park, S.; Kim, E.; Kim, S. Prediction of natural volatile organic compounds emitted by bamboo Groves in urban forests. Forests 2021, 12, 543. [Google Scholar] [CrossRef]
- Kim, G.; Park, B.; Koga, S. Development of a prediction model for NVOC concentration with changing microclimate in Camellia japonica temple forest. J. Facult. Agric. Kyushu Univ. 2021, 66, 105–113. [Google Scholar] [CrossRef]
- Kim, G.; Park, S.; Kwak, D. Is it possible to predict the concentration of natural volatile organic compounds in forest atmosphere? Int. J. Environ. Res. Public Health 2020, 17, 7875. [Google Scholar] [CrossRef]
- Jo, Y.; Park, S. Prediction equations of phytoncide concentration in Korean pine (Pinus koraiensis) forest. Environ. Epidemiol. 2019, 3, 303–304. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, G.; Park, S.; Lee, S.; Kim, S.; Kim, E. Statistical evidence for managing forest density in consideration of natural volatile organic compounds. Atmosphere 2021, 12, 1113. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, X. Photo and video quality evaluation: Focusing on the subject. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 386–399. [Google Scholar] [CrossRef]
- Peterson, B. Learning to See Creatively: Design, Color, and Composition in Photography; Amphoto Books: New York, NY, USA, 2015. [Google Scholar]
- Automatic Mountain Meteorology Observation System. Available online: http://mw.nifos.go.kr (accessed on 12 May 2022).
- Kim, G.; Park, B.-J.; Joung, D.; Yeom, D.-G.; Koga, S. Primary concentration measurements of natural volatile organic compounds in atmosphere using the headspace solid–phase microextraction method within the forest. J. Facult. Agric. Kyushu Univ. 2015, 60, 471–476. [Google Scholar] [CrossRef]
- Mues, A.; Manders, A.; Schaap, M.; Van Ulft, L.H.; Van Meijgaard, E.; Builtjes, P. Differences in particulate matter concentrations between urban and rural regions under current and changing climate conditions. Atmos. Environ. 2013, 80, 232–247. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, J.; Kim, J. Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate. Build. Environ. 2019, 165, 106393. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Lim, K.C.; Jamei, E. Urban heat Island and wind flow characteristics of a tropical city. Sol. Energy 2014, 107, 159–170. [Google Scholar] [CrossRef]
- Yoon, S.; Won, M.; Jang, K. A study on optimal site selection for automatic mountain meteorology observation system (AMOS): The case of Honam and Jeju areas. Korean J. Agric. Forest Meteorol. 2016, 18, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, B.J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of forest bathing on physiological and psychological responses in Young Japanese Male subjects. Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef]
- Choi, K.M.; Shin, W.S.; Yeoun, P.S.; Cho, Y.M. The influence of forest walking exercise on human, stress and fatigue. J. Korean Inst. For. Recreat. 2011, 15, 61–66. [Google Scholar]
- Bach, A.; Maneja, R.; Zaldo-Aubanell, Q.; Romanillos, T.; Llusià, J.; Eustaquio, A.; Palacios, O.; Penuelas, J. Human Absorption of Monoterpenes after a 2-h Forest Exposure: A field experiment in a Mediterranean Holm Oak Forest. J. Pharm. Biomed. Anal. 2021, 200, 114080. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Liu, H.; Wang, Y.; Cheng, H.; Wang, R.; Wang, L.; Xiao, H.; Yang, X. Sensitivity of biogenic volatile organic compound emissions to leaf area index and land cover in Beijing. Atmos. Chem. Phys. 2018, 18, 9583–9596. [Google Scholar] [CrossRef] [Green Version]
- Oderbolz, D.C.; Aksoyoglu, S.; Keller, J.; Barmpadimos, I.; Steinbrecher, R.; Skjøth, C.A.; Plaß-Dülmer, C.; Prévôt, A.S.H. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: Improved seasonality and land-cover. Atmos. Chem. Phys. 2013, 13, 1689–1712. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A. Seasonal and spatial variations in natural volatile organic compound emissions. Ecol. Appl. 1997, 7, 34–45. [Google Scholar] [CrossRef]
- von Arx, G.; Dobbertin, M.; Rebetez, M. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric. Forest Meteorol. 2012, 166–167, 144–155. [Google Scholar] [CrossRef]
- Anderson, J.; Keppel, G.; Thomson, S.-M.; Randell, A.; Raituva, J.; Koroi, I.; Anisi, R.; Charlson, T.; Boehmer, H.J.; Kleindorfer, S. Changes in climate and vegetation with altitude on mount Batilamu, Viti levu, Fiji. J. Trop. Ecol. 2018, 34, 316–325. [Google Scholar] [CrossRef]
- Rapp, J.M.; Silman, M.R. Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim. Res. 2012, 55, 17–32. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Bryant, C.R.; Senthilnath, J. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Zhou, X.; Kono, Y.; Win, A.; Matsui, T.; Tanaka, T.S. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches. Plant Prod. Sci. 2021, 24, 137–151. [Google Scholar] [CrossRef]
- Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.-J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar] [CrossRef]
NVOCs | Microclimate Environment | 360° Forest Image | AMOS |
---|---|---|---|
α-Pinene, β-Pinene, camphene, limonene, benzaldehyde, myrcene, phellandrene, sabinene, camphor, α-terpinene, γ-terpinene, terpinolene, 3-carene, terpineol, bornyl acetate, sabina ketone, cineole, longifolene, pinocarvone, sabinene hydrate, cymene, valencene, α-bisabolol, farnesene, caryophyllene, nerol, nerolidol, pulegone, borneol, menthol, geraniol, D-fenchone | Temperature, humidity, wind speed, solar radiation, photosynthetically active radiation (PAR) | Forest density, leaf area, lower vegetation ratio, quantity of light above the horizon, quantity of light below the horizon | Temperature humidity and wind speed at 2 m and 10 m altitudes |
Parameters | Conditions | |||||
---|---|---|---|---|---|---|
Column | HP-INNOWAX (60 m × 0.25 mm × 0.25 μm, film thickness) | |||||
Carrier gas flow | He at 1 mL/min | |||||
Injection mode | Pulsed splitless | |||||
Injection port temp. | 210 °C | |||||
Transfer line temp. | 210 °C | |||||
Over temp. program | Initial | Rate | Final | |||
3 min | 40 °C | 8 °C/min | 220 °C | 3 min | 40 °C | |
Post run | 220 °C, 5 min |
Multiple Linear Regression of Model 1 and Model 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Indicators | B | SE | β | T | p2 | Adjusted R2 | F | p3 | |
Model 1 | (Constant) | −4.765 | 6.110 | 0.000 | −1.263 | 0.011 * | 0.691 | 4.589 | 0.037 * |
Temp. | 0.067 | 0.054 | 0.578 | 1.544 | 0.029 * | ||||
Humidity | 0.051 | 0.069 | 0.484 | 0.558 | 0.000 *** | ||||
Wind Speed | 5.315 | 6.760 | 0.519 | 0.583 | 0.001 ** | ||||
Solar Rad. | −0.015 | 0.040 | 0.227 | 0.467 | 0.047 * | ||||
PAR | −0.014 | 0.039 | −0.272 | 0.553 | 0.019 * | ||||
Model 2 | (Constant) | −0.677 | 0.271 | 0.000 | −7.304 | 0.001 ** | 0.711 | 8.405 | 0.020 * |
Temp. | 0.036 | 0.010 | 0.659 | 4.449 | 0.000 *** | ||||
Humidity | 0.045 | 0.038 | 0.441 | 1.709 | 0.032 * | ||||
Wind Speed | −0.461 | 0.072 | −0.508 | −4.418 | 0.000 *** | ||||
Forest Density | −0.004 | 1.935 | 0.856 | −0.002 | 0.049 * | ||||
Leaf Area | 4.758 | 3.312 | 0.771 | 1.437 | 0.015 * | ||||
Lower Veg. | 19.714 | 18.987 | 0.204 | 1.038 | 0.299 | ||||
Light Above | −0.417 | 2.127 | −0.588 | −0.196 | 0.044 * | ||||
Light Below | −3.839 | 6.909 | −0.463 | −0.556 | 0.057 |
Variables | F-Statistics | Adjusted R2 | Rank |
---|---|---|---|
100% Surface Area | 4.076 | 0.104 | 5 |
75% Surface Area | 4.010 | 0.102 | 6 |
50% Surface Area | 3.151 | 0.751 | 3 |
25% Surface Area | 3.845 | 0.870 | 1 |
0% Surface Area | 4.242 | 0.155 | 4 |
Fisheye | 6.361 | 0.819 | 2 |
Variables | F-Statistics | Adjusted R2 | Rank |
---|---|---|---|
On site (HOBO) | 3.845 | 0.870 | - |
AMOS (2 m) | 4.582 | 0.845 | 1 |
AMOS (10 m) | 3.461 | 0.728 | 3 |
AMOS (Total) | 4.060 | 0.744 | 2 |
Multiple Linear Regression of Model 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Indicators | B | SE | β | T | p2 | Adjusted R2 | F | p3 | |
Model 3 | (Constant) | −4.565 | 1.283 | 0.000 | −3.558 | 0.000 *** | 0.845 | 14.58 | 0.000 *** |
Temp. | 1.341 | 0.179 | 0.538 | 7.510 | 0.000 *** | ||||
Humidity | 0.001 | 0.018 | 0.406 | 0.062 | 0.016 * | ||||
Wind Speed | −1.578 | 0.476 | -0.377 | −3.314 | 0.001 ** | ||||
Forest Density | −0.732 | 1.702 | -0.214 | −0.430 | 0.006 ** | ||||
Leaf Area | 6.881 | 2.827 | 0.735 | 2.434 | 0.015 * | ||||
Light Above | −0.865 | 1.863 | -0.512 | −0.464 | 0.043 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Park, S.; Kim, S.; Kim, E.; Kim, G. A Model Combining Forest Environment Images and Online Microclimate Data Instead of On-Site Measurements to Predict Phytoncide Emissions. Forests 2022, 13, 1895. https://doi.org/10.3390/f13111895
Choi Y, Park S, Kim S, Kim E, Kim G. A Model Combining Forest Environment Images and Online Microclimate Data Instead of On-Site Measurements to Predict Phytoncide Emissions. Forests. 2022; 13(11):1895. https://doi.org/10.3390/f13111895
Chicago/Turabian StyleChoi, Yeji, Sujin Park, Soojin Kim, Eunsoo Kim, and Geonwoo Kim. 2022. "A Model Combining Forest Environment Images and Online Microclimate Data Instead of On-Site Measurements to Predict Phytoncide Emissions" Forests 13, no. 11: 1895. https://doi.org/10.3390/f13111895
APA StyleChoi, Y., Park, S., Kim, S., Kim, E., & Kim, G. (2022). A Model Combining Forest Environment Images and Online Microclimate Data Instead of On-Site Measurements to Predict Phytoncide Emissions. Forests, 13(11), 1895. https://doi.org/10.3390/f13111895