Natural Resource Manager Perceptions of Forest Carbon Management and Carbon Market Participation in Minnesota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Focus Groups
3. Results
3.1. Potential for Value-Added Opportunities for Forest Carbon and Carbon Markets
3.2. Concerns and Considerations
3.3. Forest Management Strategies for Carbon
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fargione, J.E.; Bassett, S.; Boucher, T.; Bridgham, S.D.; Conant, R.T.; Cook-Patton, S.C.; Ellis, P.W.; Falcucci, A.; Fourqurean, J.W.; Gopalakrishna, T.; et al. Natural climate solutions for the United States. Sci. Adv. 2018, 4, eaat1869. [Google Scholar] [CrossRef] [Green Version]
- Domke, G.M.; Walters, B.F.; Nowak, D.J.; Smith, J.; Nichols, M.C.; Ogle, S.M.; Coulston, J.W.; Wirth, T.C. Greenhouse gas emissions and removals from forest land, woodlands, and urban trees in the United States, 1990–2019. Resour. Update FS–307. Madison WI US Dep. Agric. For. Serv. North. Res. Stn. 2021, 307, 5. [Google Scholar]
- EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020. U.S. Environmental Protection Agency, EPA 430-R-22-003. 2022. Available online: https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020 (accessed on 14 January 2022).
- Nagel, L.M.; Palik, B.J.; Battaglia, M.A.; D’Amato, A.W.; Guldin, J.M.; Swanston, C.W.; Janowiak, M.K.; Powers, M.P.; Joyce, L.A.; Millar, C.I.; et al. Adaptive Silviculture for Climate Change: A national experiment in manager-scientist partnerships to apply an adaptation framework. J. For. 2017, 115, 167–178. [Google Scholar] [CrossRef]
- Ontl, T.A.; Janowiak, M.K.; Swanston, C.W.; Daley, J.; Handler, S.; Cornett, M.; Hagenbuch, S.; Handrick, C.; McCarthy, L.; Patch, N. Forest management for carbon sequestration and climate adaptation. J. For. 2020, 118, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Cook-Patton, S.C.; Gopalakrishna, T.; Daigneault, A.; Leavitt, S.M.; Platt, J.; Scull, S.M.; Amarjargal, O.; Ellis, P.W.; Griscom, B.W.; McGuire, J.L.; et al. Lower cost and more feasible options to restore forest cover in the contiguous United States for climate mitigation. One Earth 2020, 3, 739–752. [Google Scholar] [CrossRef]
- Palik, B.J.; D’Amato, A.W.; Franklin, J.F.; Johnson, K.N. Ecological Silviculture: Foundations and Applications; Waveland Press: Long Grove, IL, USA, 2020. [Google Scholar]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Fahey, T.J.; Woodbury, P.B.; Battles, J.J.; Goodale, C.L.; Hamburg, S.P.; Ollinger, S.V.; Woodall, C.W. Forest carbon storage: Ecology, management, and policy. Front. Ecol. Environ. 2010, 8, 245–252. [Google Scholar] [CrossRef] [Green Version]
- van der Gaast, W.; Sikkema, R.; Vohrer, M. The contribution of forest carbon credit projects to addressing the climate change challenge. Clim. Policy 2018, 18, 42–48. [Google Scholar] [CrossRef]
- Fleischman, F.; Basant, S.; Fischer, H.; Gupta, D.; Lopez, G.G.; Kashwan, P.; Powers, J.S.; Ramprasad, V.; Rana, P.; Rastogi, A.; et al. How politics shapes the outcomes of forest carbon finance. Curr. Opin. Environ. Sustain. 2021, 51, 7–14. [Google Scholar] [CrossRef]
- Kaarakka, L.; Cornett, M.; Domke, G.; Ontl, T.; Dee, L.E. Improved forest management as a natural climate solution: A review. Ecol. Solut. Evid. 2021, 2, e12090. [Google Scholar] [CrossRef]
- Kim, C.; Daniels, T. California’s success in the socio-ecological practice of a forest carbon offset credit option to mitigate greenhouse gas emissions. Soc. Ecol. Prac. Res. 2019, 1, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Kim, D.H.; Kim, S.I. Characteristics of forest carbon credit transactions in the voluntary carbon market. Clim. Policy 2018, 18, 235–245. [Google Scholar] [CrossRef]
- D’Amato, A.W.; Woodall, C.W.; Weiskittel, A.R.; Littlefield, C.E.; Murray, L.T. Carbon conundrums: Do United States’ current carbon market baselines represent an undesirable ecological threshold? Glob. Change Biol. 2022, 28, 3991–3994. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.A.; Snyder, S.A.; Kilgore, M.A. An assessment of forest landowner interest in selling forest carbon credits in the Lake States, USA. For. Policy Econ. 2012, 25, 113–122. [Google Scholar] [CrossRef]
- Soto, J.R.; Adams, D.C.; Escobedo, F.J. Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best–worst choice modeling in Florida USA. For. Policy Econ. 2016, 63, 35–42. [Google Scholar] [CrossRef] [Green Version]
- White, A.E.; Lutz, D.A.; Howarth, R.B.; Soto, J.R. Small-scale forestry and carbon offset markets: An empirical study of Vermont Current Use forest landowner willingness to accept carbon credit programs. PLoS ONE 2018, 13, e0201967. [Google Scholar] [CrossRef] [Green Version]
- Windmuller-Campione, M.A.; Russell, M.B.; Sagor, E.; D’Amato, A.W.; Ek, A.R.; Puettmann, K.J.; Rodman, M.G. The decline of the clearcut: 26 years of change in silvicultural practices and implications in Minnesota. J. For. 2020, 118, 244–259. [Google Scholar] [CrossRef]
- Treuer, A. Ojibwe in Minnesota; Minnesota Historical Society: St. Paul, MN, USA, 2010. [Google Scholar]
- Stearns, F.W. History of the Lake States Forests: Natural and human impacts. In Lake States Regional Forest Resources Assessment: Technical Papers; USDA Forest Service General Technical Report: Fort Collins, CO, USA, 1997. [Google Scholar]
- USDA Forest Service. Forests of Minnesota, 2019. Resource Update FS-232; U.S. Department of Agriculture, Forest Service: Madison, WI, USA, 2020; 2p. [CrossRef]
- Minnesota Department of Natural Resources. (rep.). Minnesota’s Forest Resources 2019; Minnesota Department of Natural Resources: St. Paul, MI, USA, 2021. [Google Scholar]
- Nassar-McMillan, S.C.; Borders, L.D. Use of focus groups in survey item development. Qual. Rep. 2002, 7, 1–12. [Google Scholar] [CrossRef]
- Acocella, I. The focus groups in social research: Advantages and disadvantages. Qual. Quant. 2012, 46, 1125–1136. [Google Scholar] [CrossRef]
- Bartlett, J.E.; Kotrlik, J.W.; Higgins, C.C. Organizational research: Determining appropriate sample size in survey research. Inf. Technol. Learn. Perform. J. 2001, 19, 43. [Google Scholar]
- Taherdoost, H. Determining sample size; how to calculate survey sample size. Int. J. Econ. Manag. Syst. 2017, 2, 236–239. [Google Scholar]
- Baruch, Y.; Holtom, B.C. Survey response rate levels and trends in organizational research. Hum. Relat. 2008, 61, 1139–1160. [Google Scholar] [CrossRef] [Green Version]
- Krueger, R.A.; Casey, M.A. Focus Groups: A Practical Guide for Applied Research; Sage Publications: New York, NY, USA, 2015. [Google Scholar]
- Moser, R.L.; Sagor, E.S.; Russell, M.B.; Windmuller-Campione, M.A. The Great Lakes Silviculture Library: Insights into a case study platform. J. For. 2022, 120, 289–301. [Google Scholar] [CrossRef]
- O’reilly, M.; Parker, N. ‘Unsatisfactory Saturation’: A critical exploration of the notion of saturated sample sizes in qualitative research. Qual. Res. 2012, 13, 190–197. [Google Scholar] [CrossRef]
- Guest, G.; Namey, E.; McKenna, K. How many focus groups are enough? Building an evidence base for nonprobability sample sizes. Field Methods 2017, 29, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Hennink, M.M.; Kaiser, B.N.; Weber, M.B. What influences saturation? Estimating sample sizes in focus group research. Qual. Health Res. 2019, 29, 1483–1496. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/Fullreport-1.pdf (accessed on 7 June 2021).
- Cloughesy, M.; Hall, E.S. Managing Forests to Increase Their Carbon Storage, Productivity and Resiliency. In Carbon in Oregon’s Managed Forests; Cloughesy, M., Hall, E.S., Eds.; Oregon Forest Resources Institute: Portland, OR, USA, 2020; pp. 45–62. [Google Scholar]
- Charmaz, K. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis; Sage: London, UK, 2006; 208p. [Google Scholar]
- Creswell, J.W.; Poth, C.N. Qualitative Inquiry and Research Design: Choosing among five Approches, 4th ed.; Sage: Thousand Oaks, CA, USA, 2018; 459p. [Google Scholar]
- Ashton, M.S.; Tyrrell, M.L.; Spalding, D.; Gentry, B. (Eds.) Managing Forest Carbon in a Changing Climate; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Klapwijk, M.J.; Boberg, J.; Bergh, J.; Bishop, K.; Björkman, C.; Ellison, D.; Felton, A.; Lidskog, R.; Lundmark, T.; Keskitalo, E.C.H.; et al. Capturing complexity: Forests, decision-making and climate change mitigation action. Glob. Environ. Change 2018, 52, 238–247. [Google Scholar] [CrossRef]
- von Hedemann, N.; Wurtzebach, Z.; Timberlake, T.J.; Sinkular, E.; Schultz, C.A. Forest policy and management approaches for carbon dioxide removal. Interface Focus 2020, 10, 20200001. [Google Scholar] [CrossRef]
- Howard, C.; Dymond, C.C.; Griess, V.C.; Tolkien-Spurr, D.; van Kooten, G.C. Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance Manag. 2021, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Visseren-Hamakers, I.J.; McDermott, C.; Vijge, M.J.; Cashore, B. Trade-offs, co-benefits and safeguards: Current debates on the breadth of REDD+. Curr. Opin. Environ. Sustain. 2012, 4, 646–653. [Google Scholar] [CrossRef]
- Woodall, C.W.; Weiskittel, A.R. Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics. Sci. Rep. 2021, 11, 18848. [Google Scholar] [CrossRef]
- Zhang, J.; Finley, K.A.; Johnson, N.G.; Ritchie, M.W. Lowering stand density enhances resiliency of ponderosa pine forests to disturbances and climate change. For. Sci. 2019, 65, 496–507. [Google Scholar] [CrossRef]
- Shaw, J.D. Application of stand density index to irregularly structured stands. West. J. Appl. For. 2000, 15, 40–42. [Google Scholar] [CrossRef] [Green Version]
- Gingrich, S.F. Management of Young and Intermediate stands of Upland Hardwoods; US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Washington, DC, USA, 1971; Volume 195.
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Long, J.N.; Dean, T.J.; Roberts, S.D. Linkages between silviculture and ecology: Examination of several important conceptual models. For. Ecol. Manag. 2004, 200, 249–261. [Google Scholar] [CrossRef]
- Assmann, E. The Principles of Forest Yield Studies; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Monserud, R.A.; Yang, Y.; Huang, S.; Tchebakova, N. Potential change in lodgepole pine site index and distribution under climatic change in Alberta. Can. J. For. Res. 2008, 38, 343–352. [Google Scholar] [CrossRef]
- Crookston, N.L.; Rehfeldt, G.E.; Dixon, G.E.; Weiskittel, A.R. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For. Ecol. Manag. 2010, 260, 1198–1211. [Google Scholar] [CrossRef]
- Messaoud, Y.; Chen, H.Y.H. The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS ONE 2011, 6, e14691. [Google Scholar] [CrossRef] [Green Version]
- Agne, M.C.; Beedlow, P.A.; Shaw, D.C.; Woodruff, D.R.; Lee, E.H.; Cline, S.P.; Comeleo, R.L. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, USA. For. Ecol. Manag. 2018, 409, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Campbell, J.L.; Harmon, M.E.; Mitchell, S.R. Can fuel-reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 2012, 10, 83–90. [Google Scholar] [CrossRef]
- Bowman, D.M.; Murphy, B.P.; Boer, M.M.; Bradstock, R.A.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Krawchuk, M.A.; Price, O.F.; Williams, R.J. Forest fire management, climate change, and the risk of catastrophic carbon losses. Front. Ecol. Environ. 2013, 12, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.P.; Bradstock, R.A.; Boer, M.M.; Carter, J.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Russell-Smith, J.; Williamson, G.J.; Bowman, D.M.J.S. Fire regimes of Australia: A pyrogeographic model system. J. Biogeogr. 2013, 40, 1048–1058. [Google Scholar] [CrossRef]
- Gao, P.; Terando, A.J.; Kupfer, J.A.; Varner, J.M.; Stambaugh, M.C.; Lei, T.L.; Hiers, J.K. Robust projections of future fire probability for the conterminous United States. Sci. Total Environ. 2021, 789, 147872. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Yates, C.P.; Edwards, A.C.; Whitehead, P.J.; Murphy, B.P.; Lawes, M.J. Deriving multiple benefits from carbon market-based savanna fire management: An Australian example. PLoS ONE 2015, 10, e0143426. [Google Scholar] [CrossRef]
- Bigsby, H. Carbon banking: Creating flexibility for forest owners. For. Ecol. Manag. 2009, 257, 378–383. [Google Scholar] [CrossRef]
- Sharma, S.; Kreye, M.M. Forest owner willingness to accept payment for forest carbon in the United States: A meta-analysis. Forests 2022, 13, 1346. [Google Scholar] [CrossRef]
- Butler, B.J.; Butler, S.M.; Caputo, J.; Dias, J.; Robillard, A.; Sass, E.M. Family forest ownerships of the United States, 2018: Results from the USDA Forest Service, national woodland owner survey. Gen. Tech. Rep. NRS-199. Madison WI US Dep. Agric. For. Serv. North. Res. Station. 52 P. [Plus 4 Append.] 2021, 199, 52. [Google Scholar]
- Khanal, P.N.; Grebner, D.L.; Straka, T.J.; Adams, D.C. Obstacles to participation in carbon sequestration for nonindustrial private forest landowners in the southern United States: A diffusion of innovations perspective. For. Policy Econ. 2019, 100, 95–101. [Google Scholar] [CrossRef]
- Graves, R.A.; Nielsen-Pincus, M.; Haugo, R.D.; Holz, A. Forest carbon incentive programs for non-industrial private forests in Oregon (USA): Impacts of program design on willingness to enroll and landscape-scale program outcomes. For. Policy Econ. 2022, 141, 102778. [Google Scholar] [CrossRef]
- Alhassan, M.; Motallebi, M.; Song, B. South Carolina forestland owners’ willingness to accept compensations for carbon sequestration. For. Ecosyst. 2019, 6, 16. [Google Scholar] [CrossRef]
- Frey, G.E.; Kallayanamitra, C.; James, N.A. Payments for forest-based ecosystem services in the United States: Magnitudes and trends. Ecosyst. Serv. 2021, 52, 101377. [Google Scholar] [CrossRef]
- Streck, C. How voluntary carbon markets can drive climate ambition. J. Energy Nat. Resour. Law 2021, 39, 367–374. [Google Scholar] [CrossRef]
- Melanidis, M.S.; Hagerman, S. Competing narratives of nature-based solutions: Leveraging the power of nature or dangerous distraction? Environ. Sci. Policy 2022, 132, 273–281. [Google Scholar] [CrossRef]
- Sass, E.M.; Caputo, J.; Butler, B.J. United States Family Forest Owners’ Awareness of and Participation in Carbon Sequestration Programs: Initial Findings from the USDA Forest Service National Woodland Owner Survey. For. Sci. 2022, 1–5. [Google Scholar] [CrossRef]
- Souder, J.A.; Fairfax, S.K. State Trust Lands: History, Management, and Sustainable Use; University Press of Kansas: Lawrence, KS, USA, 1996. [Google Scholar]
- Zieman, T. Minnesota’s School Trust Lands; Ser. FY18-19 Biennial Report; Minnesota Department of Natural Resources: St. Paul, MN, USA, 2019. [Google Scholar]
- Multiple-Use Sustained-Yield Act of 1960 Pub. L. 86-517, 12 June 1960, 74 Stat. 215 (16 U.S.C. 528 et seq.). Available online: https://www.fs.usda.gov/nrs/pubs/gtr/gtr_nrs199.pdf (accessed on 7 June 2021).
- Dilling, L.; Birdsey, R.; Pan, Y.; Brown, D.G.; Robinson, D.T.; French NH, F.; Reed, C.B. Opportunities and challenges for carbon management on US public lands. In Land Use and the Carbon Cycle: Advances in Integrated Science, Management and Policy; Cambridge University Press: Cambridge, UK, 2013; pp. 455–476. [Google Scholar]
- Davis, E.J.; Hajjar, R.; Charnley, S.; Moseley, C.; Wendel, K.; Jacobson, M. Community-based forestry on federal lands in the western United States: A synthesis and call for renewed research. For. Policy Econ. 2020, 111, 102042. [Google Scholar] [CrossRef]
- Giebink, C.L.; Domke, G.M.; Fisher, R.A.; Heilman, K.A.; Moore, D.J.; DeRose, R.J.; Evans, M.E. The policy and ecology of forest-based climate mitigation: Challenges, needs, and opportunities. Plant Soil 2022, 479, 25–52. [Google Scholar] [CrossRef]
Organization Type | Participants |
---|---|
Federal | 3 |
State | 4 |
County | 1 |
Industry | 2 |
Tribal | 1 |
Non-industrial Private Forest | 1 |
Non-governmental Organization | 3 |
Question |
---|
How have the broader management goals for you or your organization changed over the last 20 years? |
To what extent is carbon management currently incorporated into your forest management plans? |
In what ways is carbon sequestration and storage compatible with your management plans in the future? |
Activity: Rate these four broad actions on how viable they are for your landbase. |
Avoid emissions by reducing forest conversion |
Increase forest area |
Prevent emissions by reducing risk of fire, disease, and mortality |
Increase carbon in existing forests and products through silviculture |
Is there a capacity to assist landowners and managers with inventory efforts to determine carbon storage? |
What resources already exist in Minnesota to better inform forest carbon management and carbon markets? |
What economic markets would need to exist for carbon management to be viable? |
Management Strategy | First Place | Second Place | Third Place | Fourth Place | Weighted Average |
---|---|---|---|---|---|
Avoid emissions by reducing forest conversion | 3 | 0 | 3 | 8 | 6.5 |
Increase forest area | 2 | 3 | 4 | 5 | 7.5 |
Prevent emissions by reducing risk of fire, disease, and mortality | 5 | 4 | 4 | 1 | 10.25 |
Increase carbon in existing forests and products through silviculture | 4 | 7 | 3 | 0 | 10.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, R.L.; Windmuller-Campione, M.A.; Russell, M.B. Natural Resource Manager Perceptions of Forest Carbon Management and Carbon Market Participation in Minnesota. Forests 2022, 13, 1949. https://doi.org/10.3390/f13111949
Moser RL, Windmuller-Campione MA, Russell MB. Natural Resource Manager Perceptions of Forest Carbon Management and Carbon Market Participation in Minnesota. Forests. 2022; 13(11):1949. https://doi.org/10.3390/f13111949
Chicago/Turabian StyleMoser, Robert Lane, Marcella A. Windmuller-Campione, and Matthew B. Russell. 2022. "Natural Resource Manager Perceptions of Forest Carbon Management and Carbon Market Participation in Minnesota" Forests 13, no. 11: 1949. https://doi.org/10.3390/f13111949
APA StyleMoser, R. L., Windmuller-Campione, M. A., & Russell, M. B. (2022). Natural Resource Manager Perceptions of Forest Carbon Management and Carbon Market Participation in Minnesota. Forests, 13(11), 1949. https://doi.org/10.3390/f13111949