Machine Learning-Assisted In Vitro Rooting Optimization in Passiflora caerulea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Culture Medium, and Growth Conditions
2.2. Modeling Procedures
2.3. Sensitivity Analysis
2.4. Optimization Process via Genetic Algorithm (GA)
2.5. Validation Experiment
3. Results
3.1. Effect of Type and Concentration of Auxins as Well as Type of Explants on In Vitro Rooting of P. caerulea
3.2. The Efficiency of GRNN in Modeling and Predicting In Vitro Rooting of P. caerulea
3.3. The Importance of Input Variables in In Vitro Rooting of P. caerulea
3.4. Application of GRNN-GA for Determining the Optimal Concentration of Auxin as Well as the Type of Explant to Maximize In Vitro Rooting of P. caerulea
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pacheco, G.; Simão, M.J.; Vianna, M.G.; Garcia, R.O.; Vieira, M.L.C.; Mansur, E. In vitro conservation of Passiflora—A review. Sci. Hortic. 2016, 211, 305–311. [Google Scholar] [CrossRef]
- Jafari, M.; Daneshvar, M.H.; Lotfi, A. In vitro shoot proliferation of Passiflora caerulea L. via cotyledonary node and shoot tip explants. BioTechnologia 2017, 98, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Daneshvar, M.H.; Lotfi-Jalalabadi, A. Direct organogenesis of passion flower (Passiflora caerulea L.) via leaf and petiole explants. Iran. J. Hortic. Sci. 2018, 49, 375–382. [Google Scholar] [CrossRef]
- Hieu, T.; Phong, T.H.; Khai, H.D.; Mai, N.T.N.; Cuong, D.M.; Luan, V.Q.; Tung, H.T.; Nam, N.B.; Tan Nhut, D. Efficient production of vigorous passion fruit rootstock for in vitro grafting. Plant Cell Tissue Organ Cult. 2022, 148, 635–648. [Google Scholar] [CrossRef]
- Ferreira, M.d.S.; Soares, T.L.; Costa, E.M.R.; Silva, R.L.d.; Jesus, O.N.d.; Junghans, T.G.; Souza, F.V.D. Optimization of culture medium for the in vitro germination and histochemical analysis of Passiflora spp. pollen grains. Sci. Hortic. 2021, 288, 110298. [Google Scholar] [CrossRef]
- Jafari, M.; Daneshvar, M.H.; Lotfi-Jalalabadi, A. Control of in vitro contamination of Passiflora caerulea by using of sodium hypochlorite. Indo-Am. J. Agric. Vet. Sci. 2016, 4, 8–15. [Google Scholar]
- Anand, S.P.; Jayakumar, E.; Jeyachandran, R.; Nandagobalan, V.; Doss, A. Direct Organogenesis of Passiflora foetida L. through Nodal Explants. Plant Tissue Cult. Biotechnol. 2012, 22, 87–91. [Google Scholar] [CrossRef]
- Boboc Oros, P.; Cantor, M.; Cordea, M.I.; Cătană, C. Plant Regeneration Protocol for Recalcitrant Passionflower (Passiflora quadrangularis L.). Horticulturae 2022, 8, 337. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Eftekhari, M.; Ahmadi, H.; Akbari, M.; Khorami, S.S. Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G × N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm. Sci. Rep. 2018, 8, 9977. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Shahsavar, A.R. Sodium nitroprusside: Its beneficial role in drought stress tolerance of “Mexican lime” (Citrus aurantifolia (Christ.) Swingle) under in vitro conditions. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 155–168. [Google Scholar] [CrossRef]
- Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef] [PubMed]
- Niazian, M.; Niedbała, G. Machine Learning for Plant Breeding and Biotechnology. Agriculture 2020, 10, 436. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Tulpan, D.; Eskandari, M. Using Hybrid Artificial Intelligence and Evolutionary Optimization Algorithms for Estimating Soybean Yield and Fresh Biomass Using Hyperspectral Vegetation Indices. Remote Sens. 2021, 13, 2555. [Google Scholar] [CrossRef]
- Hesami, M.; Yoosefzadeh Najafabadi, M.; Adamek, K.; Torkamaneh, D.; Jones, A.M. Synergizing Off-Target Predictions for In Silico Insights of CENH3 Knockout in Cannabis through CRISPR/Cas. Molecules 2021, 26, 2053. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Eskandari, M.; Torabi, S.; Torkamaneh, D.; Tulpan, D.; Rajcan, I. Machine-Learning-Based Genome-Wide Association Studies for Uncovering QTL Underlying Soybean Yield and Its Components. Int. J. Mol. Sci. 2022, 23, 5538. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Torabi, S.; Tulpan, D.; Rajcan, I.; Eskandari, M. Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods. Front. Plant Sci. 2021, 12, 777028. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Tulpan, D.; Eskandari, M. Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits. PLoS ONE 2021, 16, e0250665. [Google Scholar] [CrossRef]
- Hesami, M.; Alizadeh, M.; Jones, A.M.P.; Torkamaneh, D. Machine learning: Its challenges and opportunities in plant system biology. Appl. Microbiol. Biotechnol. 2022, 106, 3507–3530. [Google Scholar] [CrossRef]
- Hesami, M.; Naderi, R.; Tohidfar, M. Modeling and Optimizing in vitro Sterilization of Chrysanthemum via Multilayer Perceptron-Non-dominated Sorting Genetic Algorithm-II (MLP-NSGAII). Front. Plant Sci. 2019, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Hesami, M.; Naderi, R.; Tohidfar, M.; Yoosefzadeh-Najafabadi, M. Application of Adaptive Neuro-Fuzzy Inference System-Non-dominated Sorting Genetic Algorithm-II (ANFIS-NSGAII) for Modeling and Optimizing Somatic Embryogenesis of Chrysanthemum. Front. Plant Sci. 2019, 10, 869. [Google Scholar] [CrossRef]
- Hesami, M.; Naderi, R.; Tohidfar, M.; Yoosefzadeh-Najafabadi, M. Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: Effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study. Plant Methods 2020, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Naderi, R.; Tohidfar, M. Modeling and Optimizing Medium Composition for Shoot Regeneration of Chrysanthemum via Radial Basis Function-Non-dominated Sorting Genetic Algorithm-II (RBF-NSGAII). Sci. Rep. 2019, 9, 18237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesami, M.; Naderi, R.; Tohidfar, M. Introducing a hybrid artificial intelligence method for high-throughput modeling and optimizing plant tissue culture processes: The establishment of a new embryogenesis medium for chrysanthemum, as a case study. Appl. Microbiol. Biotechnol. 2020, 104, 10249–10263. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Alizadeh, M.; Naderi, R.; Tohidfar, M. Forecasting and optimizing Agrobacterium-mediated genetic transformation via ensemble model-fruit fly optimization algorithm: A data mining approach using chrysanthemum databases. PLoS ONE 2020, 15, e0239901. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Shojaeiyan, A.; Ahmadi, H. Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock. Front. Plant Sci. 2016, 7, 1526. [Google Scholar] [CrossRef] [Green Version]
- Arab, M.M.; Yadollahi, A.; Ahmadi, H.; Eftekhari, M.; Maleki, M. Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G × N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA). Front. Plant Sci. 2017, 8, 1853. [Google Scholar] [CrossRef] [Green Version]
- Hesami, M.; Jones, A.M.P. Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Appl. Microbiol. Biotechnol. 2021, 105, 5201–5212. [Google Scholar] [CrossRef]
- Pepe, M.; Hesami, M.; Small, F.; Jones, A.M.P. Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of Cannabis sativa: Prediction and Validation of in vitro Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources. Front. Plant Sci. 2021, 12, 757869. [Google Scholar] [CrossRef]
- Pepe, M.; Hesami, M.; Jones, A.M. Machine Learning-Mediated Development and Optimization of Disinfection Protocol and Scarification Method for Improved In Vitro Germination of Cannabis Seeds. Plants 2021, 10, 2397. [Google Scholar] [CrossRef]
- Hesami, M.; Pepe, M.; Monthony, A.S.; Baiton, A.; Phineas Jones, A.M. Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.). Ind. Crops Prod. 2021, 170, 113753. [Google Scholar] [CrossRef]
- Aasim, M.; Katırcı, R.; Akgur, O.; Yildirim, B.; Mustafa, Z.; Nadeem, M.A.; Baloch, F.S.; Karakoy, T.; Yılmaz, G. Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (Cannabis sativa L.). Ind. Crops Prod. 2022, 181, 114801. [Google Scholar] [CrossRef]
- Niazian, M.; Sadat-Noori, S.A.; Abdipour, M.; Tohidfar, M.; Mortazavian, S.M.M. Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.) Sprague). Vitr. Cell. Dev. Biol.-Plant 2018, 54, 54–68. [Google Scholar] [CrossRef]
- Hesami, M.; Condori-Apfata, J.A.; Valderrama Valencia, M.; Mohammadi, M. Application of Artificial Neural Network for Modeling and Studying In Vitro Genotype-Independent Shoot Regeneration in Wheat. Appl. Sci. 2020, 10, 5370. [Google Scholar] [CrossRef]
- Fakhrzad, F.; Jowkar, A.; Hosseinzadeh, J. Mathematical modeling and optimizing the in vitro shoot proliferation of wallflower using multilayer perceptron non-dominated sorting genetic algorithm-II (MLP-NSGAII). PLoS ONE 2022, 17, e0273009. [Google Scholar] [CrossRef] [PubMed]
- Kirtis, A.; Aasim, M.; Katırcı, R. Application of artificial neural network and machine learning algorithms for modeling the in vitro regeneration of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult. (PCTOC) 2022, 150, 141–152. [Google Scholar] [CrossRef]
- Niazian, M.; Shariatpanahi, M.E.; Abdipour, M.; Oroojloo, M. Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma 2019, 256, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Hosseini, M.; Arab, M.M.; Soltani, M.; Eftekhari, M.; Soleimani, A.; Vahdati, K. Predictive modeling of Persian walnut (Juglans regia L.) in vitro proliferation media using machine learning approaches: A comparative study of ANN, KNN and GEP models. Plant Methods 2022, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Farhadi, S.; Moieni, A.; Safaie, N.; Hesami, M. A hybrid model based on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture. Plant Methods 2021, 17, 13. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Shahsavar, A. The application of artificial neural networks in modeling and predicting the effects of melatonin on morphological responses of citrus to drought stress. PLoS ONE 2020, 15, e0240427. [Google Scholar] [CrossRef] [PubMed]
- Ramezanpour, M.R.; Farajpour, M. Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium. PLoS ONE 2022, 17, e0264040. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-H.; Wu, J.; Lu, H.-Y.; Wang, J.-Z. A case study on a hybrid wind speed forecasting method using BP neural network. Knowl.-Based Syst. 2011, 24, 1048–1056. [Google Scholar] [CrossRef]
- Leung, M.T.; Chen, A.-S.; Daouk, H. Forecasting exchange rates using general regression neural networks. Comput. Oper. Res. 2000, 27, 1093–1110. [Google Scholar] [CrossRef]
- Shahlaei, M.; Sabet, R.; Ziari, M.B.; Moeinifard, B.; Fassihi, A.; Karbakhsh, R. QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components. Eur. J. Med. Chem. 2010, 45, 4499–4508. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.G.; Chaudhary, A.K.; Nandi, S.; Tambe, S.S.; Kulkarni, B.D. Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN). Biochem. Eng. J. 2004, 18, 193–210. [Google Scholar] [CrossRef]
- Polat, Ö.; Yıldırım, T. Genetic optimization of GRNN for pattern recognition without feature extraction. Expert Syst. Appl. 2008, 34, 2444–2448. [Google Scholar] [CrossRef]
- Tuhaise, S.; Nakavuma, J.L.; Adriko, J.; Ssekatawa, K.; Kiggundu, A. In vitro regeneration of Ugandan passion fruit cultivars from leaf discs. BMC Res. Notes 2019, 12, 425. [Google Scholar] [CrossRef] [Green Version]
- Teixeira da Silva, J.A.; Gulyás, A.; Magyar-Tábori, K.; Wang, M.-R.; Wang, Q.-C.; Dobránszki, J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta 2019, 249, 975–1006. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Daneshvar, M.H. Effects of sodium nitroprusside on indirect shoot organogenesis and in vitro root formation of Tagetes erecta: An important medicinal plant. Pol. J. Appl. Sci. 2020, 5, 14–19. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Jain, S.M. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef] [PubMed]
Input Variables | Output Variables | |||||
---|---|---|---|---|---|---|
IBA mg/L | NAA mg/L | IAA mg/L | Type of Explant | Rooting Percentage (%) | Root Number | Root Length (cm) |
0 | 0 | 0 | Leaf | 0.00 ± 0.000 | 0.00 ± 0.000 | 0.00 ± 0.000 |
0 | 0 | 0 | Node | 0.00 ± 0.000 | 0.00 ± 0.000 | 0.00 ± 0.000 |
0 | 0 | 0 | Internode | 0.00 ± 0.000 | 0.00 ± 0.000 | 0.00 ± 0.000 |
0.5 | 0 | 0 | Leaf | 50.00 ± 0.000 | 7.10 ± 0.058 | 3.97 ± 0.088 |
0.5 | 0 | 0 | Node | 53.33 ± 3.337 | 7.17 ± 0.033 | 4.00 ± 0.058 |
0.5 | 0 | 0 | Internode | 50.00 ± 0.000 | 7.10 ± 0.100 | 4.00 ± 0.058 |
1 | 0 | 0 | Leaf | 90.00 ± 0.000 | 9.83 ± 0.088 | 4.83 ± 0.033 |
1 | 0 | 0 | Node | 90.00 ± 0.000 | 9.80 ± 0.116 | 4.80 ± 0.058 |
1 | 0 | 0 | Internode | 86.67 ± 3.337 | 9.80 ± 0.058 | 4.83 ± 0.067 |
2 | 0 | 0 | Leaf | 60.00 ± 0.000 | 6.00 ± 0.000 | 4.10 ± 0.100 |
2 | 0 | 0 | Node | 60.00 ± 0.000 | 6.27 ± 0.120 | 4.17 ± 0.088 |
2 | 0 | 0 | Internode | 60.00 ± 0.000 | 6.10 ± 0.058 | 4.07 ± 0.067 |
0 | 0.5 | 0 | Leaf | 50.00 ± 0.000 | 3.93 ± 0.033 | 4.57 ± 0.067 |
0 | 0.5 | 0 | Node | 50.00 ± 0.000 | 4.00 ± 0.000 | 4.60 ± 0.058 |
0 | 0.5 | 0 | Internode | 50.00 ± 0.000 | 4.00 ± 0.058 | 4.57 ± 0.033 |
0 | 1 | 0 | Leaf | 40.00 ± 0.000 | 3.00 ± 0.000 | 5.87 ± 0.033 |
0 | 1 | 0 | Node | 40.00 ± 0.000 | 3.20 ± 0.058 | 5.87 ± 0.033 |
0 | 1 | 0 | Internode | 40.00 ± 0.000 | 3.07 ± 0.033 | 5.80 ± 0.000 |
0 | 2 | 0 | Leaf | 30.00 ± 0.000 | 2.00 ± 0.000 | 3.83 ± 0.033 |
0 | 2 | 0 | Node | 30.00 ± 0.000 | 2.13 ± 0.088 | 3.83 ± 0.033 |
0 | 2 | 0 | Internode | 33.33 ± 3.337 | 2.13 ± 0.033 | 3.80 ± 0.058 |
0 | 0 | 0.5 | Leaf | 16.67 ± 3.337 | 1.60 ± 0.058 | 2.57 ± 0.067 |
0 | 0 | 0.5 | Node | 20.00 ± 0.000 | 1.60 ± 0.058 | 2.53 ± 0.033 |
0 | 0 | 0.5 | Internode | 16.67 ± 3.337 | 1.53 ± 0.033 | 2.60 ± 0.058 |
0 | 0 | 1 | Leaf | 20.00 ± 0.000 | 1.23 ± 0.033 | 2.47 ± 0.033 |
0 | 0 | 1 | Node | 26.67 ± 3.337 | 1.27 ± 0.033 | 2.53 ± 0.088 |
0 | 0 | 1 | Internode | 20.00 ± 0.000 | 1.23 ± 0.033 | 2.43 ± 0.033 |
0 | 0 | 2 | Leaf | 13.33 ± 3.337 | 1.07 ± 0.033 | 2.03 ± 0.033 |
0 | 0 | 2 | Node | 13.33 ± 3.337 | 1.07 ± 0.033 | 2.07 ± 0.033 |
0 | 0 | 2 | Internode | 16.67 ± 3.337 | 1.03 ± 0.033 | 2.03 ± 0.033 |
In Vitro Rooting Response | Performance Criteria | Training | Testing |
---|---|---|---|
Rooting percentage (%) | R2 | 0.970 | 0.939 |
RMSE | 2.524 | 3.580 | |
MAPE | 0.0 | 63.6 | |
Root number | R2 | 0.949 | 0.929 |
RMSE | 0.074 | 0.106 | |
MAPE | 0.0 | 0.9 | |
Root length | R2 | 0.958 | 0.955 |
RMSE | 0.069 | 0.133 | |
MAPE | 0.0 | 3.6 |
Input Variable | Item | Learning Process | IBA | NAA | IAA | Explant |
---|---|---|---|---|---|---|
Rooting percentage | VSR | Training | 9.266 | 4.629 | 2.447 | 1.436 |
Testing | 6.747 | 3.983 | 1.728 | 0.871 | ||
Rank | 1 | 2 | 3 | 4 | ||
Root number | VSR | Training | 34.427 | 12.896 | 5.172 | 1.282 |
Testing | 22.400 | 10.335 | 3.769 | 1.051 | ||
Rank | 1 | 2 | 3 | 4 | ||
Root length | VSR | Training | 17.581 | 19.028 | 9.569 | 1.435 |
Testing | 9.674 | 12.151 | 5.362 | 0.555 | ||
Rank | 2 | 1 | 3 | 4 |
Objective Function | Type of Explant | IBA (mg/L) | NAA (mg/L) | IAA (mg/L) | Predicted-Optimized Value | Value ± SE in the Validation Experiment |
---|---|---|---|---|---|---|
Rooting percentage | Leaf | 0.64 | 0.33 | 0.15 | 90% | 93.33 ± 3.335% |
Root number | Leaf | 0.57 | 0.23 | 0.19 | 9.83 | 9.91 ± 0.325 |
Root length | Leaf | 0.39 | 0.82 | 0.24 | 5.81 cm | 5.87 ± 0.124 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari, M.; Daneshvar, M.H.; Jafari, S.; Hesami, M. Machine Learning-Assisted In Vitro Rooting Optimization in Passiflora caerulea. Forests 2022, 13, 2020. https://doi.org/10.3390/f13122020
Jafari M, Daneshvar MH, Jafari S, Hesami M. Machine Learning-Assisted In Vitro Rooting Optimization in Passiflora caerulea. Forests. 2022; 13(12):2020. https://doi.org/10.3390/f13122020
Chicago/Turabian StyleJafari, Marziyeh, Mohammad Hosein Daneshvar, Sahar Jafari, and Mohsen Hesami. 2022. "Machine Learning-Assisted In Vitro Rooting Optimization in Passiflora caerulea" Forests 13, no. 12: 2020. https://doi.org/10.3390/f13122020
APA StyleJafari, M., Daneshvar, M. H., Jafari, S., & Hesami, M. (2022). Machine Learning-Assisted In Vitro Rooting Optimization in Passiflora caerulea. Forests, 13(12), 2020. https://doi.org/10.3390/f13122020