Trade-Offs and Synergies between Plant Species Diversity and Water Retention Capacity of Pinus massoniana Plantation Community in Danjiangkou Reservoir Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method
2.2.1. Plot Setup and Investigation
2.2.2. Methods for Analysis of Understory Plant Species Diversity
2.2.3. Calculation of Water Retention Capacity
2.2.4. Calculation of Tradeoffs and Synergies
2.3. Data Processing
3. Results and Analysis
3.1. Species Composition and Diversity of Understory Vegetation
3.2. Water Retention Capacity of Pinus massoniana Plantation
3.3. Trade-Offs and Synergies Analysis of Plant Species Diversity and Water Retention Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, C.; Mattthews, W. Mans Impact on the Global Environment: Assessment and Recommendations for Action; Report of the Study of Critical Environment Problems (SCEP); MIT Press: Cambridge, MA, USA, 1970; p. 319. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Liu, H.; Huang., Y.; Yin, S.; Jin, G. Assessment and analysis of ecosystem services value along the Yangtze river under the background of the Yangtze river peotection strategy. J. Geogr. Sci. 2020, 30, 552–568. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, G.; Qi, L. Spatio-temporal dynamics and scenario simulation of water production in Danjiangkou reservoir area. For. Sci. 2020, 56, 12–20. [Google Scholar]
- Zhao, P.; Li, Z.; Zhang, R.; Pan, J.; Liu, Y. Does water diversion project deteriorate the water quality of reservoir and downstream? A case-study in Danjiangkou reservoir. Glob. Ecol. Conserv. 2020, 24, 0125. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Hou, L.; Song, L.; Yang, H. Effects of stand density on species diversity and soil nutrients in Chinese fir plantations. J. Soil Sci. 2020, 57, 239–250. [Google Scholar]
- Guo, Q. The diversity-biomass-productivity relationships in grassland management and restoration. Basic Appl. Ecol. 2007, 8, 199–208. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, K.; Liu, X. Simulation of the biomass dynamics of Masson pine forest under different management. J. For. Res. 2006, 17, 305–311. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, J.; Lei, G.; Ding, X.; Liu, X. Nitrogen and phosphorus interception effect of waterfront vegetation buffer zone in Danjiangkou reservoir area, Hubei province. For. Sci. 2020, 56, 12–20. [Google Scholar]
- Ding, X.; Cheng, C.; Qi, L.; Zhang, J.; Lei, G. Water conservation capacity of masson pine plantations with different densities in Hubei water source area of Danjiangkou reservoir area. J. Ecol. 2019, 38, 2291–2301. [Google Scholar]
- Ding, B.; Ding, G.; Zhang, Y. Effects of density regulation on carbon storage in masson pine plantation ecosystem. J. Northwest For. Univ. 2016, 31, 197–203. [Google Scholar]
- Qi, L.; Pang, T.; Chen, X.; He, Y.; Li, Z. Study on nutrient cycle of Masson pine fly-seeded forest in Hunan province. J. Cent. South Univ. For. 2003, 23, 26–32. [Google Scholar]
- Xiao, X.; Guo, X.; Ouyang, X.; Wu, Z. Understory vegetation characteristics and soil quality evaluation of Masson pine forests with different densities. J. Northeast. For. Univ. 2015, 43, 62–66. [Google Scholar]
- Zhang, L.; Wu, M.; Wan, Y. Research on water quality security measures of Danjiangkou reservoir, the water source of the middle route of the south-to-north water diversion project. China Water Resour. 2018, 1, 44–47. [Google Scholar]
- Cui, H.; Liu, X.; Tang, W.; Lan, Y. Study on hydrological and ecological effects of mixed pine and cypress forests in Danjiangkou reservoir area. J. Jiangxi Agric. Univ. 2007, 29, 784–787. [Google Scholar]
- Liu, X.; Tang, W.; Cui, H. Comprehensive evaluation of water conservation function of main vegetation types in Danjiangkou reservoir area. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2009, 33, 59–63. [Google Scholar]
- Ma, K. Method for measuring biome diversity I. α Measurements of diversity (previous). Biodiversity 1994, 3, 162–168. [Google Scholar]
- Ma, K.; Liu, Y. Method for measuring biome diversity I. α Measurements of diversity (next). Biodiversity 1994, 4, 231–239. [Google Scholar]
- Ma, K.; Huang, J.; Yu, S.; Chen, L. Plant community diversity in Dongling mountain, Beijing, China. Acta Ecol. Sin. 1995, 15, 268–277. [Google Scholar]
- Curtis, J.; McIntosh, R. An upland forest continuum in the Prairie-forest border region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- The Second Botanical Terminology Review Committee. Botanical Nomenclature, 2nd ed.; Science Press: Beijing, China, 2019. [Google Scholar]
- Shannon, C.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Simpson, E. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E. The measure of diversity in different types of biological collections. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, X.; Shi, W. Evaluation of water conservation services of forest ecosystem in Fujian Province: A comparison between InVEST model and meta-analysis. Acta Ecol. Sin. 2021, 41, 1349–1361. [Google Scholar]
- Ma, G.; Mansur, S.; Zhang, X. Water conservation function of different vegetation types in the upper reaches of Tailan river in Tomur peak nature reserve. J. Soil Water Conserv. 2019, 32, 210–216. [Google Scholar]
- Zhang, Z.; Yu, X.; Niu, J.; Lu, S.; Liu, X.; Zhang, Y. Ecohydrological functions of litter on different forest stands. J. Soil Water Conserv. 2005, 3, 139–143. [Google Scholar]
- Ma, G.; Mansur, S. Water conservation function of forest ecosystems in the upper Tailan river in the mount tumor nature reserve. J. Soil Water Conserv. 2017, 31, 147–153. [Google Scholar]
- Gong, J.; Liu, D.; Zhang, J.; Xie, Y.; Cao, E.; Li, H. Tradeoffs/synergies of multiple ecosystem services based on land use simulation in a mountain-basin area, Western China. Ecol. Indic. 2019, 99, 283–293. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, B.; Zeng, H. How dose urbanization affect vegetation productivity in the coastal cities of eastern China? Sci. Total Environ. 2022, 811, 152356. [Google Scholar] [CrossRef]
- Shoemaker, D.; BenDor, T.; Meentemeyer, R. Anticipating trade-offs between urban patterns and ecosystem service production: Scenario analyses of sprawl alternatives for a rapidly urbanizing region. Comput. Environ. Urban Syst. 2019, 74, 114–125. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, C.; Zhu, C.; Gao, Q. Ecosystem service trade-offs and identification of eco-optimal regions in urban agglomerations in arid regions of China. J. Clean. Prod. 2022, 373, 133823. [Google Scholar] [CrossRef]
- Tao, G.; Bu, Y.; Xue, W.; Zuo, M.; Lu, R. Relationship between shrub and grass diversity and stand spatial structure in Pine Tabulaeformis fly-seeded forest with different densities. J. For. Environ. 2020, 40, 171–177. [Google Scholar]
- Lu, S.; Liu, F.; Yu, X.; Wang, S.; Yang, X. Study on the structure and function of Pinus tabulaeformis forests with different afforestation densities in the soil-rocky mountainous area of North China. Resour. Environ. Arid. Reg. 2007, 21, 144–149. [Google Scholar]
- Sheng, W. On the maintenance of long-term productivity of plantations in my country. For. Res. 2018, 31, 1–14. [Google Scholar]
- Kesang, W.; András, D.; Prem, B.; Maria, W.; Werner, Z.; Georg, G. Species richness, diversity and density of understory vegetation along disturbance gradients in the Himalayan conifer forest. J. Mt. Sci. 2014, 11, 1182–1191. [Google Scholar]
- Lu, Z.; Wu, G.; Ma, X.; Bai, G. Current situation of Chinese forestry tactics and strategy of sustainable development. J. For. Res. 2002, 13, 319–322. [Google Scholar]
Geographical Position | Density/Plants·ha | Density Type | Slope/° | Altitude/m | Average Diameter/cm | Average Height/m | Rainfall/mm | Penetrating Rain/mm |
---|---|---|---|---|---|---|---|---|
111°11′55″ E, 32°40′50″ N | 950 | low | 20 | 178 | 18.14 ± 0.59 | 12.94 ± 0.85 | 291.4 | 232.80 ± 32.76 |
111°11′9″ E, 32°40′1″ N | 1000 | 17 | 260 | |||||
111°11′44″ E, 32°40′23″ N | 925 | 19 | 207 | |||||
111°11′52″ E, 32°40′21″ N | 1625 | mid | 21 | 190 | 16.34 ± 0.75 | 12.72 ± 0.16 | 291.4 | 213.87 ± 40.29 |
111°11′38″ E, 32°40′20″ N | 1425 | 17 | 202 | |||||
111°11′59″ E, 32°40′37″ N | 1425 | 15 | 198 | |||||
111°11′40″ E, 32°41′21″ N | 2400 | high | 27 | 231 | 12.79 ± 1.35 | 13.24 ± 2.19 | 291.4 | 209.67 ± 38.02 |
111°12′23″ E, 32°40′35″ N | 2525 | 19 | 192 | |||||
111°12′12″ E, 32°40′38″ N | 2375 | 21 | 189 |
Layer | Density | Dominant Species | Importance Value |
---|---|---|---|
Shrub layer | Low | Rubus coreanus + Rhus chinensis + Discocleidion rufescens + Rubus corchorifolius + Pistacia chinensis | 0.5209 + 0.4529 + 0.4214 + 0.3874 + 0.3869 |
Mid | Rhus chinensis + Rubus coreanus + Sapium sebiferum + Broussonetia kazinoki + Quercus variabilis | 0.4705 + 0.3691 + 0.3474 + 0.2603 + 0.2096 | |
High | Broussonetia papyrifera + Melia azedarach + Broussonetia kazinoki + Rubus coreanus + Rubus corchorifolius | 0.4992 + 0.3512 + 0.3512 + 0.3441 + 0.2945 | |
Herb layer | Low | Ophiopogon bodinieri + Dendranthema indicum + Imperata cylindrica + Crepidiastrum lanceolatum + Oxalis corniculata | 0.4276 + 0.3809 + 0.3581 + 0.3520 + 0.3030 |
Mid | Corydalis edulis + Crepidiastrum lanceolatum + Imperata cylindrica + Dendranthema indicum + Digitaria sanguinalis | 0.4230 + 0.3386 + 0.3220 + 0.2619 + 0.2443 | |
High | Trachelospermum jasminoides + Crepidiastrum lanceolatum + Digitaria sanguinalis + Oxalis corniculata + Corydalis edulis | 0.7281 + 0.5403 + 0.3816 + 0.3441 + 0.3177 |
Level | Density | S | H | D | J |
---|---|---|---|---|---|
Shrub layer | Low | 7.00 ± 2.00 a | 0.68 ± 0.13 a | 0.74 ± 0.07 a | 0.81 ± 0.04 ab |
Mid | 9.33 ± 2.51 a | 0.64 ± 0.14 a | 0.67 ± 0.13 a | 0.67 ± 0.16 b | |
High | 9.33 ± 0.58 a | 0.83 ± 0.04 a | 0.81 ± 0.03 a | 0.86 ± 0.03 a | |
Herb layer | Low | 10.67 ± 3.061 a | 0.93 ± 0.09 a | 0.86 ± 0.03 a | 0.91 ± 0.04 ab |
Mid | 8.67 ± 3.51 a | 0.84 ± 0.181 ab | 0.83 ± 0.06 ab | 0.93 ± 0.04 a | |
High | 6.67 ± 3.51 a | 0.60 ± 0.29 b | 0.66 ± 0.22 b | 0.74 ± 0.17 b |
Density | Canopy Interception | Trunk Flow | Litter Interception | Soil Interception |
---|---|---|---|---|
Low | 19.26% | 1.06% | 20.32% | 2.36% |
Mid | 24.77% | 2.50% | 27.27% | 2.68% |
High | 26.66% | 1.93% | 28.59% | 1.69% |
Average | 23.56% | 1.83% | 25.39% | 2.24% |
Density Change | ESCI of Biodiversity | ESCI of Water Retention | ESTSD |
---|---|---|---|
Low–mid | −0.26 | 0.14 | −1.18 |
Mid–high | −0.09 | 0.03 | −1.53 |
Layer | Density Change | Canopy Interception | Trunk Flow | Litter Layer Water Storage | Soil Water Storage | |
---|---|---|---|---|---|---|
Cor. | Shrub | −0.999 | −0.760 | 0.837 | 0.612 | |
Herb | −0.997 | −0.804 | 0.874 | 0.554 | ||
Trade-offs and synergies | Shrub | Low–mid | −1.2156 | −3.938 | 1.036 | −1.725 |
Mid–high | −1.033 | 2.175 | −1.046 | 3.380 | ||
Herb | Low–mid | −1.018 | −1.827 | 1.674 | −3.680 | |
Mid–high | −1.097 | 1.270 | −1.538 | 1.804 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Tang, Z.; Zhang, A.; Wang, A.; Qi, L. Trade-Offs and Synergies between Plant Species Diversity and Water Retention Capacity of Pinus massoniana Plantation Community in Danjiangkou Reservoir Area. Forests 2022, 13, 2081. https://doi.org/10.3390/f13122081
Li S, Tang Z, Zhang A, Wang A, Qi L. Trade-Offs and Synergies between Plant Species Diversity and Water Retention Capacity of Pinus massoniana Plantation Community in Danjiangkou Reservoir Area. Forests. 2022; 13(12):2081. https://doi.org/10.3390/f13122081
Chicago/Turabian StyleLi, Siyao, Zhiying Tang, Ao Zhang, Aihua Wang, and Lianghua Qi. 2022. "Trade-Offs and Synergies between Plant Species Diversity and Water Retention Capacity of Pinus massoniana Plantation Community in Danjiangkou Reservoir Area" Forests 13, no. 12: 2081. https://doi.org/10.3390/f13122081
APA StyleLi, S., Tang, Z., Zhang, A., Wang, A., & Qi, L. (2022). Trade-Offs and Synergies between Plant Species Diversity and Water Retention Capacity of Pinus massoniana Plantation Community in Danjiangkou Reservoir Area. Forests, 13(12), 2081. https://doi.org/10.3390/f13122081