How Wood Quality Can Be Shaped: Results of 70 Years of Experience
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Comparable Starting Conditions for Pruned Trees
3.2. Effect of Pruning on Ring Width, Earlywood, and Latewood over Seven Decades
3.3. Permanence of Pruning Effect over Time
3.4. Wood Density Is Changed by Pruning
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Dimensions of Sample Trees at the Age of 35 Years | |||||||||
---|---|---|---|---|---|---|---|---|---|
Tree I | Tree II | Tree III | Tree IV | ||||||
Pruning Variant | DBH with Bark [cm] | Height [m] | DBH with Bark [cm] | Height [m] | DBH with Bark [cm] | Height [m] | DBH with Bark [cm] | Height [m] | |
0 | A | 11.9 | 16.4 | 14.0 | 17.0 | 16.0 | 18.4 | 19.8 | 19.7 |
1/4 | B | 11.5 | 14.8 | 13.4 | 16.5 | 15.6 | 17.4 | 20.4 | 18.4 |
1/3 | C | 10.9 | 15.2 | 13.1 | 18.4 | 15.3 | 18.6 | 18.5 | 18.0 |
1/2 | D | 10.7 | 14.6 | 12.5 | 16.4 | 15.3 | 17.6 | 18.5 | 18.2 |
2/3 | E | 10.7 | 14.7 | 12.1 | 16.5 | 15.4 | 18.0 | 18.4 | 18.0 |
Height Increment Per Tree [cm] | Diameter Increment [m2] | Number of Trees | |||||
---|---|---|---|---|---|---|---|
Pruning Variant | 1951 | 1952 | 1951 | 1952 | 1951 | 1975 | |
0 | A | 30.0 | 34.0 | 1.6 | 2.8 | 860 | 516 |
1/4 | B | 25.0 | 28.0 | 1.6 | 2.5 | 980 | 529 |
1/3 | C | 30.0 | 32.0 | 1.5 | 2.8 | 872 | 453 |
1/2 | D | 24.0 | 25.0 | 1.4 | 2.3 | 900 | 495 |
2/3 | E | 23.0 | 24.0 | 1.4 | 1.9 | 872 | 427 |
Meteorolog-ical Data | Year | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
Precipitation [mm] | 1951 | 31.4 | 37.7 | 23.8 | 27.4 | 32.0 | 52.0 | 52.5 | 78.9 | 12.9 | 0.2 | 39.6 | 10.6 |
1952 | 40.1 | 22.5 | 19.5 | 25.6 | 63.3 | 63.3 | 32.6 | 40.5 | 66.5 | 35.4 | 26.9 | 8.5 | |
Temperature [°C] | 1951 | −0.4 | 0.8 | 1.1 | 8.7 | 12.0 | 17.8 | 18.3 | 19.4 | 15.0 | 6.9 | 6.9 | 3.0 |
1952 | 0.7 | 0.2 | −0.8 | 10.7 | 12.0 | 15.8 | 18.2 | 18.8 | 11.7 | 7.0 | 5.5 | 2.7 | |
Relative humidity [%] | 1951 | 82 | 86 | 78 | 61 | 69 | 65 | 71 | 73 | 75 | 76 | 88 | 82 |
1952 | 85 | 87 | 70 | 72 | 72 | 73 | 67 | 74 | 81 | 89 | 89 | 81 |
References
- Prescher, F.; Stahl, E.G. The Effect of Provenance and Spacing on Stem Straightness and Number of Spike Knots of Scots Pine in South and Central Sweden; Faculty of Forestry, Swedish University of Agricultural Sciences: Uppsala, Switzerland, 1986. [Google Scholar]
- Savidge, R.A.; Jeronimidis, G. Tree Growth and Wood Quality. In Wood Quality and Its Biological Basis; Barnett, J.R., Jeronimidis, G., Eds.; Blackwell Publishing: Oxford, UK, 2003; pp. 1–29. [Google Scholar]
- Brüchert, F.; Becker, G.; Speck, T. The mechanics of Norway Spruce [Picea abies (L.) Karst]: Mechanical Properties of Standing Trees from Different Thinning Regimes. For. Ecol. Manag. 2000, 135, 45–62. [Google Scholar] [CrossRef]
- Tomczak, A.; Pazdrowski, W.; Jelonek, T. Quality of Scots pine (Pinus sylvestris L.) wood. Part III. The effect of silviculture on wood quality. Sylwan 2009, 153, 519–527. [Google Scholar]
- Mäkinen, H. Growth, Suppression, Death, and Self-Pruning of Branches of Scots Pine in Southern and Central Finland. Can. J. For. Res. 1999, 29, 585–594. [Google Scholar] [CrossRef]
- Mäkinen, H.; Colin, F. Predicting the Number, Death, and Self-Pruning of Branches in Scots Pine. Can. J. For. Res. 1999, 29, 1225–1236. [Google Scholar] [CrossRef]
- Jelonek, T.; Pazdrowski, W.; Tomczak, A. Biometric Traits of Wood and Quality of Timber Produced in Former Farmland. Balt. For. 2008, 14, 138–148. [Google Scholar]
- Sellier, D.; Fourcaud, T. Crown Structure and Wood Properties: Influence on Tree Sway and Response to High Winds. Am. J. Bot. 2009, 96, 885–896. [Google Scholar] [CrossRef]
- Krajnc, L.; Farrelly, N.; Harte, A.M. The Influence of Crown and Stem Characteristics on Timber Quality in Softwoods. For. Ecol. Manag. 2019, 435, 8–17. [Google Scholar] [CrossRef]
- Gajewska, J.; Azzahra, N.A.; Bingöl, Ö.A.; Jankowska, K.I.; Jelonek, T.; Deckert, J.; Wieczorek, J.F.; Jelonek, M.A. Cadmium Stress Reprograms Ros/Rns Homeostasis in Phytophthora infestans (Mont.) de bary. Int. J. Mol. Sci. 2020, 21, 8375. [Google Scholar] [CrossRef]
- Fernández Quiroga, M.P.; Basauri, J.; Madariaga, C.; Miguélez, M.M.; Olea, R.; Gerendiain, A.Z. Effects of Thinning and Pruning on Stem and Crown Characteristics of Radiata Pine (Pinus radiata D. Don). IForest 2017, 10, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Alcorn, P.J.; Bauhus, J.; Smith, R.G.B.; Thomas, D.; James, R.; Nicotra, A. Growth Response Following Green Crown Pruning in Plantation-Grown Eucalyptus pilularis and Eucalyptus cloeziana. Can. J. For. Res. 2008, 38, 770–781. [Google Scholar] [CrossRef]
- Amateis, R.L.; Burkhart, H.E. Growth of Young Loblolly Pine Trees Following Pruning. For. Ecol. Manag. 2011, 262, 2338–2343. [Google Scholar] [CrossRef]
- Víquez, E.; Víquez, D. Effect of Pruning on Tree Growth, Yield, and Wood Properties of Tectona grandis Plantations in Costa Rica. Silva Fenn. 2005, 39, 381. [Google Scholar] [CrossRef]
- Långström, B.; Hellqvist, C. Effects of Different Pruning Regimes on Growth and Sapwood Area of Scots Pine. For. Ecol. Manag. 1991, 44, 239–254. [Google Scholar] [CrossRef]
- Gyenge, J.; Fernández, M.; Schlichter, T. Effect of Stand Density and Pruning on Growth of Ponderosa Pines in NW Patagonia, Argentina. Agrofor. Syst. 2010, 78, 233–241. [Google Scholar] [CrossRef]
- Cown, D. Effects of Severe Thinning and Pruning Treatments on the Intrinsic Wood Properties of Young Radiata Pine. N. Z. J. For. Sci. 1973, 3, 379–389. [Google Scholar]
- Burkhart, H.E.; Amateis, R.L. Effects of Early Pruning on Ring Specific Gravity in Young Loblolly Pine Trees. Wood Fiber Sci. 2020, 52, 139–151. [Google Scholar] [CrossRef]
- Gartner, B.L.; Robbins, J.M.; Newton, M. Effects of Pruning on Wood Density and Tracheid Length in Young Douglas-Fir. Wood Fiber Sci. 2005, 37, 304–313. [Google Scholar]
- Moreno-Fernández, D.; Hevia, A.; Majada, J.; Cañellas, I. Do Common Silvicultural Treatments Affect Wood Density of Mediterranean Montane Pines? Forests 2018, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Sutton, W.R.J.; Crowe, J.B. Selective Pruning of Radiata Pine. N. Z. J. For Sci. 1975, 5, 171–195. [Google Scholar]
- Hevia, A.; Alvarez-González, J.G.; Majada, J. Effects of Pruning on Knotty Core Taper and Form of Pinus radiata and Pinus pinaster. Eur. J. Wood Wood Prod. 2016, 74, 741–750. [Google Scholar] [CrossRef]
- Neilsen, W.A.; Pinkard, E.A. Effects of Green Pruning on Growth of Pinus radiata. Can. J. For. Res. 2003, 33, 2067–2073. [Google Scholar] [CrossRef]
- Oleksyn, J.; Reich, P.; Chalupka, W.; Tjoelker, M. Differential Above and Below-ground Biomass Accumulation of European Pinus sylvestris Populations in a 12-year-old Provenance Experiment. Scand. J. For. Res. 1999, 14, 7–17. [Google Scholar] [CrossRef]
- Kurbanov, E.; Vorobyov, O.; Gubayev, A.; Moshkina, L.; Lezhnin, S. Carbon Sequestration After Pine Afforestation on Marginal Lands in the Povolgie Region of Russia: A Case Study of the Potential for a Joint Implementation Activity. Scand. J. For. Res. 2007, 22, 488–499. [Google Scholar] [CrossRef]
- Li., M.-Y.; Leng, Q.-N. Li. M.-Y.; Leng, Q.-N.; Hao, G-Y. Contrasting patterns of radial growth rate between Larix principis-rupprechtii and Pinus sylvestris var. Mongolica along an elevational gradient are mediated by differences in xylem hydraulics. For. Ecol. Manag. 2021, 497, 119524. [Google Scholar] [CrossRef]
- Uotila, A.; Mustonen, S. The Effect of Different Levels of Green Pruning on the Diameter Growth of Pinus sylvestris L. Scand. J. For. Res. 1994, 9, 226–232. [Google Scholar] [CrossRef]
- Bergström, B.; Gref, R.; Ericsson, A. Effects of Pruning on Heartwood Formation in Scots Pine Trees. J For. Sci. 2004, 50, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Wąsik, R.; Michalec, K.; Barszcz, A. The Variability of Certain Macrostructural Features and the Density of Grand Fir (Abies grandis Lindl.) Wood from Selected Stands in Southern Poland. Drewno 2015, 8, 45–58. [Google Scholar] [CrossRef]
- Olesen, P.O. The Water Displacement Method: A Fast and Accurate Method of Determining the Green Volume of Wood Samples. For. Tree Improv. 1971, 1971, 3–23. [Google Scholar]
- Smith, D.M. Wood Quality of Loblolly Pine after Thinning; Forest Products Lab Madison: Madison, WI, USA, 1968. [Google Scholar]
- Winandy, J.E. Wood Properties. Encycl. Agric. Sci. 1994, 4, 549–561. [Google Scholar]
- Schweingruber, F.H. Wood Structure and Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Persson, B.; Persson, A.; Ståhl, E.G.; Karlmats, U. Wood Quality of Pinus sylvestris Progenies at Various Spacings. For. Ecol. Manag. 1995, 76, 127–138. [Google Scholar] [CrossRef]
- Jelonek, T.; Pazdrowski, W.; Tomczak, A. The Efect of Biological Class and Age on Physical and Mechanical Properties of European Larch (Larix decidua mill.) in Poland. Wood Res. 2009, 54, 1–14. [Google Scholar]
- Wiemann, M.C.; Williamson, G.B. Geographic Variation in Wood Specific Gravity: Effects of Latitude, Temperature, and Precipitation. Wood Fiber Sci 2002, 34, 96–107. [Google Scholar]
- Mäkinen, H.; Isomäki, A. Thinning Intensity and Growth of Scots Pine Stands in Finland. For. Ecol. Manag. 2004, 201, 311–325. [Google Scholar] [CrossRef]
- Repola, J. Models for Vertical Wood Density of Scots Pine, Norway Spruce and Birch Stems, and their Application to Determine Average Wood Density. Silva Fenn. 2006, 40, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Auty, D.; Achim, A.; Macdonald, E.; Cameron, A.D.; Gardiner, B.A. Models for Predicting Wood Density Variation in Scots Pine. Forestry 2014, 87, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Zeller, L.; Ammer, C.; Annighöfer, P.; Biber, P.; Marshall, J.; Schütze, G.; del Río Gaztelurrutia, M.; Pretzsch, H. Tree Ring Wood Density of Scots Pine and European Beech Lower in Mixed-Species Stands Compared with Monocultures. For. Ecol. Manag. 2017, 400, 363–374. [Google Scholar] [CrossRef]
- Jelonek, T. Wood density of Scots pine (Pinus sylvestris L.) in Poland. Ann. Wars. Univ. Life Sci. -SGGW. For. Wood Technol. 2008, 65, 157–163. [Google Scholar]
- Kozakiewicz, P.; Jankowska, A.; Mamiński, M.; Marciszewska, K.; Ciurzycki, W.; Tulik, M. The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests 2020, 11. [Google Scholar] [CrossRef]
- Kellomäki, S.; Ikonen, V.P.; Peltola, H.; Kolström, T. Modelling the Structural Growth of Scots Pine with Implications for Wood Quality. Ecol. Model. 1999, 122, 117–134. [Google Scholar] [CrossRef]
- Ikonen, V.P.; Kellomäki, S.; Peltola, H. Sawn Timber Properties of Scots Pine as Affected by Initial Stand Density, Thinning and Pruning: A Simulation Based Approach. Silva Fenn. 2009, 43, 411–431. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yoda, K.; Hozumi, K.; Kira, T. A Quantitative Analysis of Plant Form; The Pipe Model Theory, I. Basic Analyses. Jpn. J. Ecol. 1964, 14, 97–105. [Google Scholar] [CrossRef]
- Jelonek, T.; Pazdrowski, W.; Arasimowicz, M.; Tomczak, A.; Walkowiak, R.; Szaban, J. The Applicability of The Pipe Model Theory in Trees of Scots Pine of Poland. J. For. Sci. 2008, 54, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Lehnebach, R.; Beyer, R.; Letort, V.; Heuret, P. The Pipe Model Theory Half a Century on: A Review. Ann. Bot. 2018, 121, 773–795. [Google Scholar] [CrossRef] [PubMed]
- Cochard, H. Nucleation/Nucléation Cavitation in Trees. C. R. Phys. 2006, 7, 1018–1026. [Google Scholar] [CrossRef]
- James, K.R.; Haritos, N.; Ades, P.K. Mechanical Stability of Trees under Dynamic Loads. Am. J. Bot. 2006, 93, 1522–1530. [Google Scholar] [CrossRef]
- Spatz, H.C.; Bruechert, F. Basic Biomechanics of Self-Supporting Plants: Wind Loads and Gravitational Loads on a Norway Spruce Tree. For. Ecol. Manag. 2000, 1–3, 33–44. [Google Scholar] [CrossRef]
- Mencuccini, M.; Grace, J.; Fioravanti, M. Biomechanical and Hydraulic Determinants of Tree Structure in Scots Pine: Anatomical Characteristics. Tree Physiol. 1997, 17, 105–113. [Google Scholar] [CrossRef]
- Hinrichsen, D. The Forest Decline Enigma: What Underlies Extensive Dieback on Two Continents? Bioscience 1987, 37, 542–546. [Google Scholar] [CrossRef]
- Mattheck, G.C. Mechanical Classification of Adaptive Growth. In Trees; Springer: Berlin/Heidelberg, Germany, 1991; pp. 16–20. [Google Scholar]
- Geritz, S.A.H.; Kisdi, É.; Meszéna, G.; Metz, J.A.J. Evolutionarily Singular Strategies and the Adaptive Growth and Branching of the Evolutionary Tree. Evol. Ecol. 1998, 12, 35–57. [Google Scholar] [CrossRef]
- Brüchert, F.; Gardiner, B. The Effect of Wind Exposure on the Tree Aerial Architecture and Biomechanics of Sitka Spruce (Picea sitchensis, Pinaceae). Am. J. Bot. 2006, 93, 1512–1521. [Google Scholar] [CrossRef]
- Jelonek, T.; Tomczak, A.; Katrusiak, A.; Arasimowicz-Jelonek, M.; Gzyl, J.; Remlein, A. The Novel Relationship Between the Morphological Characteristics of Trees and Ultrastructure of Wood Tissue in Scots Pine (Pinus sylvestris L.). Wood Res. 2015, 60, 519–530. [Google Scholar]
- Savidge, R.A. Xylogenesis, Genetic and Environmental Regulation—A Review. IAWA J. 1996, 17, 269–310. [Google Scholar] [CrossRef]
- Larson, P.R.; Kretschmann, D.E.; Clark, A.I.; Isebrands, J.G. Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2001; Volume 1. [Google Scholar]
Pruning Variant | DBH [cm] | Height [m] | Crown Diameter [m] | Crown Length [m] | Site Index | Growing Stock [m3/ha] | Stocking | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sd | Sd | Sd | Sd | ||||||||
A | 36.33 | 3.53 | 29.20 | 0.60 | 5.15 | 1.19 | 8.33 | 2.01 | I | 390 | 1.0 |
B | 37.33 | 2.08 | 28.73 | 0.70 | 4.98 | 0.68 | 7.93 | 2.80 | |||
C | 35.50 | 2.18 | 28.73 | 0.50 | 4.90 | 1.35 | 7.20 | 0.92 | |||
D | 34.50 | 2.78 | 27.07 | 1.50 | 4.77 | 0.32 | 5.73 | 0.23 | |||
E | 34.33 | 3.97 | 27.27 | 2.61 | 4.27 | 1.27 | 5.07 | 3.06 | |||
Total | 35.60 | 5.14 | 28.20 | 1.42 | 4.81 | 0.97 | 6.85 | 1.90 |
Earlywood [mm] | Latewood [mm] | Ring Width [mm] | |||||||
---|---|---|---|---|---|---|---|---|---|
Pruning Variant | Sd | CV [%] | Sd | CV [%] | Sd | CV [%] | |||
A | 1.35 | 0.68 | 50.20 | 1.16 | 0.56 | 48.17 | 2.51 | 1.10 | 43.63 |
B | 1.38 | 0.75 | 53.99 | 1.17 | 0.56 | 48.23 | 2.55 | 1.21 | 47.28 |
C | 1.37 | 0.88 | 64.55 | 1.18 | 0.55 | 46.61 | 2.55 | 1.29 | 50.41 |
D | 1.34 | 0.89 | 66.66 | 1.17 | 0.52 | 44.81 | 2.51 | 1.28 | 50.95 |
E | 1.38 | 0.77 | 55.74 | 1.15 | 0.59 | 51.58 | 2.53 | 1.02 | 40.16 |
Early Wood [mm] | Late Wood [mm] | Annual Ring [mm] | |||||||
---|---|---|---|---|---|---|---|---|---|
Pruning Variant | Sd | CV [%] | Sd | CV [%] | Sd | CV [%] | |||
A | 0.99 | 0.50 | 50.65 | 0.94 * | 0.41 | 44.11 | 1.93 | 0.81 | 41.76 |
B | 1.11 * | 0.54 | 48.90 | 1.01 * | 0.44 | 43.31 | 2.12 * | 0.85 | 39.97 |
C | 1.01 | 0.55 | 53.89 | 1.01 * | 0.43 | 42.38 | 2.02 | 0.89 | 44.08 |
D | 0.98 | 0.56 | 57.15 | 1.08 * | 0.34 | 31.44 | 2.06 | 0.78 | 37.66 |
E | 0.92 | 0.59 | 64.67 | 1.14 x | 0.49 | 42.68 | 2.06 | 0.94 | 45.71 |
Total | 1.00 | 0.56 | 56.15 | 1.04 | 0.43 | 41.60 | 2.04 | 0.88 | 43.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelonek, T.; Kopaczyk, J.; Neumann, M.; Tomczak, A.; Pazdrowski, W.; Grzywiński, W.; Klimek, K.; Naskrent, B.; Kuźmiński, R.; Szwed, T. How Wood Quality Can Be Shaped: Results of 70 Years of Experience. Forests 2022, 13, 2103. https://doi.org/10.3390/f13122103
Jelonek T, Kopaczyk J, Neumann M, Tomczak A, Pazdrowski W, Grzywiński W, Klimek K, Naskrent B, Kuźmiński R, Szwed T. How Wood Quality Can Be Shaped: Results of 70 Years of Experience. Forests. 2022; 13(12):2103. https://doi.org/10.3390/f13122103
Chicago/Turabian StyleJelonek, Tomasz, Joanna Kopaczyk, Mathias Neumann, Arkadiusz Tomczak, Witold Pazdrowski, Witold Grzywiński, Katarzyna Klimek, Bartłomiej Naskrent, Robert Kuźmiński, and Tomasz Szwed. 2022. "How Wood Quality Can Be Shaped: Results of 70 Years of Experience" Forests 13, no. 12: 2103. https://doi.org/10.3390/f13122103
APA StyleJelonek, T., Kopaczyk, J., Neumann, M., Tomczak, A., Pazdrowski, W., Grzywiński, W., Klimek, K., Naskrent, B., Kuźmiński, R., & Szwed, T. (2022). How Wood Quality Can Be Shaped: Results of 70 Years of Experience. Forests, 13(12), 2103. https://doi.org/10.3390/f13122103