Influence of the Thickness of Scots Pine (Pinus sylvestris L.) Veneers on Selected Properties of Flooring Materials
Abstract
:1. Introduction
2. Experimental Tests
2.1. Materials
- Pressing time—12 min.
- Temperature—120 °C.
- Pressure—1.2 MPa.
- Winter time: temperature 22 °C, 10% air humidity for 28 days.
- Summer time: temperature 22 °C, 80% air humidity for 28 days.
2.2. Methods
2.2.1. Tests of Bending
2.2.2. Tests of Stiffness
3. Results and Discussion
3.1. Density Profile
3.2. Static Bending
3.3. Dynamic Bending
3.4. Fatigue Bending
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanchet, P.; Beauregard, R.; Cloutier, A.; Gendron, G.; Lefebvre, M. Evaluation of Various Engineered Wood Flooring Constructions. For. Prod. J. 2003, 53, 30–37. [Google Scholar]
- Gungor, N.M.; Kurtoglu, A.; Korkut, S. Solid Wood Flooring and Multilayered Parquet Industries in Turkey. Sci. Res. Essays 2009, 4, 1243–1247. [Google Scholar]
- Aksamija, A. Comparative Analysis of Flooring Materials: Environmental and Economic Performance. Perkins+Will Res. J. 2010, 2, 55–66. [Google Scholar]
- Barlinek, S.A. Barlinek Engineered Wood Flooring. Available online: https://www.barlinek.co.uk/products/engineered-wood-flooring/ (accessed on 7 January 2022).
- Kaczkan Premium Wooden Floors. Available online: https://kaczkan.com/en/our-floors/wood-finishing/ (accessed on 7 January 2022).
- Global Wood. Available online: http://www.globalwood.be/aanbod/assortiment/ (accessed on 7 January 2022).
- Blanchet, P. Long-Term Performance of Engineered Wood Flooring When Exposed to Temperature and Humidity Cycling. For. Prod. J. 2008, 58, 37–44. [Google Scholar]
- Borysiuk, P.; Burawska-Kupniewska, I.; Auriga, R.; Kowaluk, G.; Kozakiewicz, P.; Zbiec, M. Influence of Layered Structure of Composite Timber Floor Boards on Their Hardness. Drv. Ind. 2019, 70, 399–406. [Google Scholar] [CrossRef]
- Heräjärvi, H. Variation of Basic Density and Brinell Hardness within Mature Finnish Betula Pendula and B. Pubescens Stems. Wood Fiber Sci. 2004, 36, 216–227. [Google Scholar]
- Holmberg, H. Influence of Grain Angle on Brinell Hardness of Scots Pine (Pinus sylvestris L.). Holz Roh-Und Werkst. 2000, 58, 91–95. [Google Scholar] [CrossRef]
- Song-Yung, W.; Hon-Lin, W. Effects of Moisture Content and Specific Gravity on Static Bending Properties and Hardness of Six Wood Species. J. Wood Sci. 1999, 45, 127–133. [Google Scholar]
- Grześkiewicz, M.; Krawiecki, J. Thermally Modified Ash and Oak Wood as Materials for Parquets—Mechanical Properties of the Wood and Its UV Resistance for Different Kinds of Wood Finishing. Ann. WULS—SGGW For. Wood Technol. 2008, 65, 93–97. [Google Scholar]
- Esteves, B.M.; Pereira, H.M. Wood Modification by Heat Treatment: A Review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Herrera-Builes, J.F.; Sepúlveda-Villarroel, V.; Osorio, J.A.; Salvo-Sepúlveda, L.; Ananías, R.A. Effect of Thermal Modification Treatment on Some Physical and Mechanical Properties of Pinus Oocarpa. Wood. For. 2021, 12, 249. [Google Scholar] [CrossRef]
- Xiaoyan, Y.; Dandan, X.; Yan, S.; Yuran, G.; Jilong, F.; Xiaohan, D.; Zaixin, H.; Xiaoying, D.; Yufeng, D.; Yongfeng, L. Preparation of Wood-Based Panel Composites with Poplar Veneer as the Surface Layer Modified by In-Situ Polymerization of Active Monomers. Forests 2020, 11, 893. [Google Scholar]
- Kamke, F.A.; Zylkowski, S.C. Effect of Wood-Based Panel Characteristics on Thermal Conductivity. For. Prod. J. 1989, 52, 75–83. [Google Scholar]
- Seo, J.; Jeon, J.; Lee, J.-H.; Kim, S. Thermal Performance Analysis According to Wood Flooring Structure for Energy Conservation in Radiant Floor Heating Systems. Energy Build. 2011, 43, 2039–2042. [Google Scholar] [CrossRef]
- Rozins, R.; Iejavs, J. Evaluation of Thermal Properties of Wood Based Composite Panel Walls. Res. Rural Dev. 2014, 2, 109–114. [Google Scholar]
- Zhang, L.; Huang, X.; Liang, L.; Liu, J. Experimental Study on Heating Characteristics and Control Strategies of Ground Source Heat Pump and Radiant Floor Heating System in an Office Building. Proced. Eng. 2017, 205, 4060–4066. [Google Scholar] [CrossRef]
- Pajchrowski, G.; Noskowiak, A. Thermal Conductivity of Wooden Floors in the Context of Underfloor Heating System Applications. Drewno 2018, 61, 145. [Google Scholar]
- Makowski, A.; Noskowiak, A. Empirical Verification of a Digital Model of a Basketball to Assess Elastic Properties of Sports Floors. Ann. WULS—SGGW For. Wood Technol. 2016, 95, 227–230. [Google Scholar]
- Kallakas, H.; Rohumaa, A.; Vahermets, H.; Kers, J. Effect of Different Hardwood Species and Lay-up Schemes on the Mechanical Properties of Plywood. Forests 2020, 11, 649. [Google Scholar] [CrossRef]
- Beer, P.; Pacek, P.; Burawska-Kupniewska, I.; Oleńska, S.; Różańska, A. Influence of Alder (Alnus Glutinosa Gaerthn.) Veneers on Selected Mechanical Properties of Layered Pine (Pinus sylvestris L.) Composites. Ann. WULS—SGGW For. Wood Technol. 2019, 108, 13–20. [Google Scholar] [CrossRef]
- Byczek, M.; Borysiuk, P. Impact of the Quality on the Properties of the LVL. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2017, 99, 132–142. [Google Scholar]
- EN 1927-2:2008. Qualitative Classification of Softwood Round Timber—Part 2: Pines; iTeh Standards: Toronto, ON, Canada, 2008. [Google Scholar]
- Burawska-Kupniewska, I.; Mycka, P.; Beer, P. Influence of Scots Pine (Pinus sylvestris L.) Veneers Quality on Selected Properties of Layered Composite for Flooring Materials. Forests 2021, 12, 1017. [Google Scholar] [CrossRef]
- Lee, C.H.; Chung, M.J.; Lin, C.H.; Yang, T. Effects of Layered Structure on the Physical and Mechanical Properties of Laminated Moso Bamboo (Phyllosachys Edulis) Flooring. Constr. Build. Mater. 2012, 28, 31–35. [Google Scholar] [CrossRef]
- Barlinek, S.A. Barlinek Floor in Your Architectural Inferior. Available online: https://www.barlinek.com.pl (accessed on 22 November 2021).
- Paged Morąg, S.A. Synergy of Nature and Technology. Available online: https://sklejkapaged.pl/en/contact/ (accessed on 20 August 2021).
- Sieć Badawcza Łukasiewicz—Instytut Technologii Drewna. Available online: https://www.itd.poznan.pl/pl/vademecum/sosna (accessed on 20 August 2021).
- Centre Technique du Bois et de l’Ameublement (CTBA). Available online: https://data.bnf.fr/fr/11871779/centre_technique_du_bois_et_de_l_ameublement_paris/ (accessed on 20 August 2021).
- Jaka Jest Optymalna Temperatura i Wilgotność w Domu? Available online: https://goodair.pl/blog/temperatura-i-wilgotnoscw-domu (accessed on 11 April 2021).
- EN 310:1994. Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for Standardization: Brussels, Belgium, 1994. [Google Scholar]
- ISO 9052-1. Determination of Dynamic Stiffness. Part 1—Materials Used under Floating Floors in Dwellings; ISO: Geneva, Switzerland, 1989. [Google Scholar]
- European Commission; Communication from the Commission to the European Parliament; The Council; The European Economic and Social Committee; The Committee of the Regions. Sustainable Europe Investment Plan. European Green Deal Investment Plan; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0021&from=EN (accessed on 11 April 2021).
- European Commission; ANNEX to the Communication from the Commission to the European Parliament; The European Council; The Council; The European Economic and Social Committee; The Committee of the Regions. The European Green Deal; European Commission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/info/sites/default/files/european-green-dealcommunication-annex-roadmap_en.pdf (accessed on 11 April 2021).
- European Commission. Circular Economy Action Plan. For a cleaner and more competitive Europe. In New Circular Economy Action Plan; European Commission: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/environment/strategy/circulareconomy-action-plan_en (accessed on 11 April 2021).
- Pacek, P. Influence of the Thickness of Veneers on Selected Properties of Layered Composites. Master’s Thesis, Warsaw University of Life Science, Faculty of Wood Technology, Warsaw, Poland, 2019. (In Polish). [Google Scholar]
- Barlinek, S.A. Deska Barlinecka. Available online: https://www.barlinek.com.pl/deska-barlinecka-warstwowa/ (accessed on 10 October 2019).
Samples Mark | Oak Layer (mm) | Scots Pine Veneers in the Base Layer (mm) | |||||
---|---|---|---|---|---|---|---|
= | ┴ | = | ┴ | = | ┴ | = | |
Thick 1 | 3 | 2.5 | 3.2 | 2.5 | 3.2 | - | - |
Thick 2 | 3 | 3.2 | 3.2 | 3.2 | 3.2 | - | - |
Thin | 3 | 1.5 | 2.5 | 1.5 | 2.5 | 1.5 | 2.5 |
Test | Adhesive (g) | Hardener (g) | Hardening Time (s) |
---|---|---|---|
1 | 100 | 10 | 60 |
2 | 100 | 20 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beer, P.; Pacek, P.; Burawska-Kupniewska, I. Influence of the Thickness of Scots Pine (Pinus sylvestris L.) Veneers on Selected Properties of Flooring Materials. Forests 2022, 13, 175. https://doi.org/10.3390/f13020175
Beer P, Pacek P, Burawska-Kupniewska I. Influence of the Thickness of Scots Pine (Pinus sylvestris L.) Veneers on Selected Properties of Flooring Materials. Forests. 2022; 13(2):175. https://doi.org/10.3390/f13020175
Chicago/Turabian StyleBeer, Piotr, Paweł Pacek, and Izabela Burawska-Kupniewska. 2022. "Influence of the Thickness of Scots Pine (Pinus sylvestris L.) Veneers on Selected Properties of Flooring Materials" Forests 13, no. 2: 175. https://doi.org/10.3390/f13020175
APA StyleBeer, P., Pacek, P., & Burawska-Kupniewska, I. (2022). Influence of the Thickness of Scots Pine (Pinus sylvestris L.) Veneers on Selected Properties of Flooring Materials. Forests, 13(2), 175. https://doi.org/10.3390/f13020175