Monitoring the Sediment Surface Elevation Change across a Chronosequence of Restored Stands of Tropical Mangroves and Their Contemporary Carbon Sequestration in Soil Pool
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Characterization of Stand Variables
2.3. Measurement of Sediment Surface Elevation Change Using a Deep rSET
2.4. Contemporary Soil C Sequestration Rate
2.5. Statistical Analysis
3. Results and Discussion
3.1. Rates of Sediment Surface Elevation Change
3.2. Contemporary Soil C Sequestration Rates
3.3. Relationship with Stand Variables
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alongi, D. The Energetics of Mangrove Forests; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Alongi, D. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Clough, B. Continuing the Journey Amongst Mangroves; The International Society for Mangrove Ecosystems: Okinawa, Japan, 2013. [Google Scholar]
- Chmura, G.; Anisfeld, S.; Cahoon, D.; Lynch, J. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Donato, D.; Kauffman, J.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Kauffman, J.; Verchot, L. Climate change mitigation strategies should include tropical wetlands. Carbon Manag. 2013, 4, 491–499. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.; Murray, B.; Crooks, S.; Jenkins, W.; Sifleet, S.; Craft, C.; Fourqurean, J.; Kauffman, J.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Primavera, J.; Esteban, J. A review of mangrove rehabilitation in the Philippines: Successes, failures and future prospects. Wetl. Ecol. Manag. 2008, 16, 345–358. [Google Scholar] [CrossRef]
- Samson, M.; Rollon, R. Growth Performance of Planted Mangroves in the Philippines: Revisiting Forest Management Strategies. AMBIO J. Hum. Environ. 2008, 37, 234–240. [Google Scholar] [CrossRef]
- MacKenzie, R.; Foulk, P.; Klump, J.; Weckerly, K.; Purbospito, J.; Murdiyarso, D.; Donato, D.; Nam, V. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: A tale of two mangroves. Wetl. Ecol. Manag. 2016, 24, 245–261. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, T., Allen, S., Boschung, N., Xia, B., Bex, M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535.
- Krauss, K.; McKee, K.; Lovelock, C.; Cahoon, D.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2013, 202, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, C.; Adame, M.; Bennion, V.; Hayes, M.; O’Mara, J.; Reef, R.; Santini, N. Contemporary Rates of Carbon Sequestration Through Vertical Accretion of Sediments in Mangrove Forests and Saltmarshes of South East Queensland, Australia. Estuaries Coasts 2013, 37, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Wang, W.; Ma, W.; Wang, M. Differential in surface elevation change across mangrove forests in the intertidal zone. Estuar. Coast. Shelf Sci. 2018, 207, 203–208. [Google Scholar] [CrossRef]
- Howe, A.; Rodríguez, J.; Saco, P. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci. 2009, 84, 75–83. [Google Scholar] [CrossRef]
- Lovelock, C.; Cahoon, D.; Friess, D.; Guntenspergen, G.; Krauss, K.; Reef, R.; Rogers, K.; Saunders, M.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasmito, S.; Murdiyarso, D.; Friess, D.; Kurnianto, S. Can mangroves keep pace with contemporary sea level rise? A global data review. Wetl. Ecol. Manag. 2015, 24, 263–278. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2010, 20, 154–159. [Google Scholar] [CrossRef]
- Woodroffe, C.; Rogers, K.; McKee, K.; Lovelock, C.; Mendelssohn, I.; Saintilan, N. Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annu. Rev. Mar. Sci. 2016, 8, 243–266. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. (Eds.) Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses; Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, VA, USA, 2014. [Google Scholar]
- Kauffman, J.; Donato, D. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; Center for International Forestry Research: Bogor, Indonesia, 2012. [Google Scholar]
- Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 2005, 21, 471–477. [Google Scholar] [CrossRef]
- Adame, M.; Kauffman, J.; Medina, I.; Gamboa, J.; Torres, O.; Caamal, J.; Reza, M.; Herrera-Silveira, J. Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, J.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of natural mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 2014, 24, 518–527. [Google Scholar] [CrossRef]
- Kauffman, J.; Hernandez Trejo, H.; del Carmen Jesus Garcia, M.; Heider, C.; Contreras, W. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetl. Ecol. Manag. 2015, 24, 203–216. [Google Scholar] [CrossRef]
- Castillo, J.; Apan, A.; Maraseni, T.; Salmo, S. Tree biomass quantity, carbon stock and canopy correlates in mangrove forest and land uses that replaced mangroves in Honda Bay, Philippines. Reg. Stud. Mar. Sci. 2018, 24, 174–183. [Google Scholar] [CrossRef]
- Lynch, J.; Hensel, P.; Cahoon, D. The Surface Elevation Table and Marker Horizon Technique: A Protocol for Monitoring Wetland Elevation Dynamics; Natural Resource Report NPS/NCBN/NRR—2015/1078; National Park Service: Fort Collins, CO, USA, 2015. [Google Scholar]
- Osland, M.; Spivak, A.; Nestlerode, J.; Lessmann, J.; Almario, A.; Heitmuller, P.; Russell, M.; Krauss, K.; Alvarez, F.; Dantin, D.; et al. Ecosystem Development After Mangrove Wetland Creation: Plant–Soil Change Across a 20-Year Chronosequence. Ecosystems 2012, 15, 848–866. [Google Scholar] [CrossRef]
- Krauss, K.; Cormier, N.; Osland, M.; Kirwan, M.; Stagg, C.; Nestlerode, J.; Russell, M.; From, A.; Spivak, A.; Dantin, D.; et al. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Sci. Rep. 2017, 7, 1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; MacKenzie, R.; Tieng, T.; Soben, K.; Tulyasuwan, N.; Resanond, A.; Blate, G.; Litton, C. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 2020, 706, 135416. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, R.; Sharma, S.; Rovai, A. Environmental drivers of blue carbon dynamics in mangrove forests. In Dynamic Sedimentary Environments of Mangrove Coasts; Sidik, F., Friess, D., Eds.; Elsevier Publishing: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Alongi, D.; Sasekumar, A.; Chong, V.; Pfitzner, J.; Trott, L.; Tirendi, F.; Dixon, P.; Brunskill, G. Sediment accumulation and organic material flux in a managed mangrove ecosystem: Estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Mar. Geol. 2004, 208, 383–402. [Google Scholar] [CrossRef]
- Marchand, C. Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). For. Ecol. Manag. 2017, 384, 92–99. [Google Scholar] [CrossRef]
- Krauss, K.; Cahoon, D.; Allen, J.; Ewel, K.; Lynch, J.; Cormier, N. Surface Elevation Change and Susceptibility of Different Mangrove Zones to Sea-Level Rise on Pacific High Islands of Micronesia. Ecosystems 2010, 13, 129–143. [Google Scholar] [CrossRef]
- McKee, K.; Cahoon, D.; Feller, I. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 2007, 16, 545–556. [Google Scholar] [CrossRef]
- Cahoon, D.; Hensel, P.; Rybczyk, J.; McKee, K.; Proffitt, C.; Perez, B. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 2003, 91, 1093–1105. [Google Scholar] [CrossRef]
- Merrifield, M.; Merrifield, S.; Mitchum, G. An Anomalous Recent Acceleration of Global Sea Level Rise. J. Clim. 2009, 22, 5772–5781. [Google Scholar] [CrossRef] [Green Version]
- Kahana, R.; Abdon, R.; Daron, J.; Scannell, C. Projections of Mean Sea Level Change for the Philippines; Met Office: Devon, UK, 2016; p. 32. [Google Scholar]
- Lang’at, J.; Kairo, J.; Mencuccini, M.; Bouillon, S.; Skov, M.; Waldron, S.; Huxham, M. Rapid Losses of Surface Elevation following Tree Girdling and Cutting in Tropical Mangroves. PLoS ONE 2014, 9, e107868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffington, K.; MacKenzie, R.; Carr, J.; Apwong, M.; Krauss, K.; Thorne, K. Mangrove Species’ Response to Sea-Level Rise Across Pohnpei, Federated States of Micronesia; U.S. Geological Survey: Reston, VA, USA, 2021; 44p. [Google Scholar]
- Kirwan, M.; Mudd, S. Response of salt-marsh carbon accumulation to climate change. Nature 2012, 489, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.; Kelleway, J.; Saintilan, N.; Megonigal, J.; Adams, J.; Holmquist, J.; Lu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Twilley, R.; Chen, R.; Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 1992, 64, 265–288. [Google Scholar] [CrossRef]
Study Site | Species Richness | Tree Density (# of Individuals) | Dominant Species |
---|---|---|---|
5-year-old plantation | 1 | 20 | Rhizophora stylosa |
10-year-old plantation | 4 | 12 | Rhizophora apiculata |
25-year-old plantation | 3 | 12 | Rhizophora stylosa |
Natural Stand | 6 | 66 | Avicennia marina Sonneratia alba Aegiceras floridum |
Location | Plot 1 | Plot 2 | Plot 3 |
---|---|---|---|
(m) | (m) | (m) | |
5-year-old plantation (Catanauan, Quezon) | 11.77 | 5.65 | 3.04 |
10-year-old plantation (Catanauan, Quezon) | 7.62 | 18.35 | 8.89 |
25-year-old plantation (Catanauan, Quezon) | 13.57 | 10.63 | 15.14 |
Natural Stand (Pagbilao, Quezon) | 10.98 | 12.28 | 15.71 |
Stand Age | Mean Rate (mm year−1) |
---|---|
5-year-old | 6.1 ± 2.5 a |
10-year-old | 1.7 ± 1.3 a |
25-year-old | 0.2 ± 2.5 a |
Natural Stand | −1.9 ± 0.7 a |
Stand Age | Soil C Sequestration Rate (gC m−2 year−1) |
---|---|
5-year-old plantation | 226.3 ± 94 a |
10-year-old plantation | 123.6 ± 95 a |
25-year-old plantation | 9.0 ± 139 a |
Natural Stand | −94.5 ± 37 a |
Study Site | Biomass C Density (kg C ha−1) | Basal Area (m2 ha−1) | Soil C Stock (tC/ha) | ||
---|---|---|---|---|---|
Above-Ground | Below-Ground | Total | |||
5-year-old plantation | 3.13 ± 0.4 a | 1.98 ± 0.2 a | 5.11 ± 0.6 a | 0.84 ± 0.1 a | 533.3 ± 19.2 a |
10-year-old plantation | 28.00 ± 2.9 a | 13.71 ± 1.4 a | 41.72 ± 4.4 a | 4.59 ± 0.5 a | 682.9 ± 26.2 ab |
25-year-old plantation | 83.40 ± 6.1 b | 24.27 ± 9.9 a | 107.67 ± 4.4 b | 11.07 ± 0.8 b | 575.4 ± 37.0 a |
Natural Stand | 169.52 ± 14.9 c | 77.76 ± 6.3 b | 247.28 ± 21.1 c | 24.75 ± 1.9 c | 814.6 ± 73.4 b |
Stand variables | Sediment Elevation Change Rate | Soil Carbon Sequestration | ||
---|---|---|---|---|
R | p | r | p | |
Tree Density | −0.41 | >0.05 | −0.45 | >0.05 |
Tree Diversity | −0.55 | >0.05 | −0.46 | >0.05 |
Above-ground Biomass | −0.59 | <0.05 | −0.57 | >0.05 |
Below-ground Biomass | −0.66 | <0.05 | −0.67 | <0.05 |
Total Biomass | −0.63 | <0.05 | −0.62 | <0.05 |
Basal Area | −0.60 | <0.05 | −0.58 | <0.05 |
Soil Carbon Density | −0.40 | >0.05 | −0.30 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, J.A.; MacKenzie, R.; Manahan, J.R.; Castillo, J. Monitoring the Sediment Surface Elevation Change across a Chronosequence of Restored Stands of Tropical Mangroves and Their Contemporary Carbon Sequestration in Soil Pool. Forests 2022, 13, 241. https://doi.org/10.3390/f13020241
Castillo JA, MacKenzie R, Manahan JR, Castillo J. Monitoring the Sediment Surface Elevation Change across a Chronosequence of Restored Stands of Tropical Mangroves and Their Contemporary Carbon Sequestration in Soil Pool. Forests. 2022; 13(2):241. https://doi.org/10.3390/f13020241
Chicago/Turabian StyleCastillo, Jose Alan, Richard MacKenzie, John Rommel Manahan, and Judith Castillo. 2022. "Monitoring the Sediment Surface Elevation Change across a Chronosequence of Restored Stands of Tropical Mangroves and Their Contemporary Carbon Sequestration in Soil Pool" Forests 13, no. 2: 241. https://doi.org/10.3390/f13020241
APA StyleCastillo, J. A., MacKenzie, R., Manahan, J. R., & Castillo, J. (2022). Monitoring the Sediment Surface Elevation Change across a Chronosequence of Restored Stands of Tropical Mangroves and Their Contemporary Carbon Sequestration in Soil Pool. Forests, 13(2), 241. https://doi.org/10.3390/f13020241