Application of Additives in Platycladus orientalis (L.) Franco Tending Shreds Compost in Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
- (1)
- T1: The compost material C/N, C/P were adjusted, and 0.2% priming was added;
- (2)
- T2: The compost material C/N, C/P were adjusted, and 0.2% common compost was added;
- (3)
- T3: Adjusted the raw materials C/N and C/P only, without any additives.
- (4)
- T4 (CK, short for control check): The control check group was composted in situ after crushing the raw materials of tending materials without the regulation of C, N, and P.
2.3. Sample Collection and Index Determination
2.4. Data Collection
- (1)
- The differences in moisture content, EC, and temperature in different treatment groups at each period of composting;
- (2)
- The calculation and drawing of decomposition rates of lignin, cellulose, and hemicellulose in composting;
- (3)
- Indexes, such as nutrient content and maturity of compost, and indexes, such as pH, organic matter, and total nutrient content of compost;
- (4)
- Multiple comparisons were made at the level of 0.05 by Tukey’s test to obtain the significant differences of monitoring indicators and fertilizer nutrient content of different treatments in the composting process.
3. Results
3.1. Effect of Additives on the Composting Process of Platycladus orientalis (L.) Franco Tending Shreds
3.1.1. Temperature Variation
3.1.2. Moisture Content
3.1.3. Electrical Conductivity (EC) Value
3.1.4. Degradation Rate of Cellulose, Lignin, and Hemicellulose
3.2. Effect of Additives on Composting Quality of Platycladus orientalis (L.) Franco Tending Shreds
3.2.1. pH Value and Organic Matter Content
3.2.2. TN, K2O, P2O5, and Total Nutrients
3.2.3. Compost Maturity Test
4. Discussion
4.1. Effect of Additives on the Composting Process of Platycladus orientalis (L.) Franco Tending Shreds
4.2. Effect of Additives on Composting Quality of Platycladus orientalis (L.) Franco Tending Shreds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Planning and Finance, State Forestry and Grassland Administration. 2018 National Forestry and Grassland Development Statistical Bulletin. EB/OL. 2019. Available online: www.forestry.gov.cn/main/62/20190620/103505752690882.html (accessed on 21 June 2019).
- Mao, B. Studies on Tending Technology of Young and Half Matured Planted Scenic Forest of Pinus tabulaeformis and Platycladus orientalis (L.) Franco in Beijing. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2015. [Google Scholar]
- Chen, X.A. Utilization and development of forest tending shreds. J. Green Sci. Technol. 2013, 6, 33–34. [Google Scholar] [CrossRef]
- Yao, Y.T. Studies on the Biomass and Nutrient Cycling of the Mixed Plantation of Pinus tabulaeformis and Platycladus orientalis (L.) Franco in Xishan Region, Beijing. J. Beijing For. Univ. 1989, 2, 38–46. [Google Scholar]
- Yan, H.P.; Li, T. Preliminary Study on Treatment of Stand Tending Slashes in Landscape Forest of Xishan Forest Farm. For. Resour. Manag. 2005, 4, 62–65. [Google Scholar]
- Feng, H.Y.; Du, M.Y.; Xin, X.B.; Gao, X.; Zhang, L.J.; Kong, Q.Y.; Fa, L.; Wu, D. Seasonal variation in C, N, and P stoichiometry of Platycladus orientalis (L.) Franco plantation in the rocky mountainous areas of North China. Acta Ecol. Sin. 2019, 39, 1572–1582. [Google Scholar] [CrossRef] [Green Version]
- Han, H.G.; Du, K.; Ding, J.Y.; Cai, L.F. Research Progress on Compost Application and Technologies of Garden Waste. J. Shanxi Agric. Sci. 2018, 46, 2111–2114. [Google Scholar]
- Huang, J.Z. Research Progress of Microbe in Agricultural Waste Composting. Guangdong Agric. Sci. 2019, 46, 64–70. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.Y.; Zhou, W.L.; Qi, Z.Y. Progress on Resource Utilization of Urban Garden Waste. Environ. Sci. Technol. 2020, 43, 32–38. [Google Scholar] [CrossRef]
- Yang, D.Y.; Feng, H.P.; Xie, H.; Sang, T. Effect of Different Manure on Ageing Quality of Tomato shreds Composting. J. Inn. Mong. Agric. Univ. 2020, 41, 19–24. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.Y. Improving green waste composting by the addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 2016, 218, 335–343. [Google Scholar] [CrossRef]
- Zhang, L. The Process Control of Green Waste Composting and the Improvement and Application of Compost Product. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2015. [Google Scholar]
- Hu, X.T.; Chen, D.Y.; Niu, B.Y.; Fu, S.T.; Xin, X.; Yang, Z.C. Effects of tomato straw compost on tomato growth, yield and quality. Jiangsu Agric. Sci. 2019, 47, 108–111. [Google Scholar] [CrossRef]
- Ugo, D.C. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Jin, X. Effect of Tending Residue Compost on Seedings of Platyladus orientalis and Pinus tabulaeformis. Master’s Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Wu, X.S.; Li, Z.X.; Huang, Y.L.; Ma, J.; Han, X.B.; Zhang, F. Screening, Identification and Its Composting Application of High-temperature Strain for Degrading Lignocellulose. Anhui Agric. Sci. 2021, 49, 68–71. [Google Scholar]
- Yang, C.; Liu, Y.; Chen, X.; Wang, W.W. Effect of fungal communities on litter decomposition under Pinus tabulaeformis artificial forests. J. Cent. South Univ. For. Technol. 2016, 36, 41–47. [Google Scholar]
- Wang, J.Q.; Liu, Z.P.; Xia, J.H.; Chen, Y.P. Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting. Bioresour. Technol. 2019, 291, 121843. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.A.; Restrepo, A.P.; Alburquerque, J.A.; Pérez-Murcia, M.D.; Paredes, C.; Moral, R.; Bernal, M.P. Recycling of anaerobic digestates by composting: Effect of the bulking agent used. Clean. Prod. 2013, 47, 61–69. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Yang, L.J.; Wu, S.C.; Hu, Y.Y. Research progress of landscaping waste composting technology. Agric. Technol. 2021, 41, 139–142. [Google Scholar] [CrossRef]
- Li, C.N.; Su, M.; Yao, T.; Han, Q.Q.; Liang, J.J.; Ran, F.; Liu, Z.Y.; Liu, Y.Z.; Chai, S.J.; Gun, S.B. Effects of microbial agents on physicochemical properties and dominant bacterial communities during pig manure composting. J. Plant Nutr. Fertil. 2020, 26, 1600–1611. [Google Scholar]
- López-González, J.A.; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; Jurado, M.M.; Moreno, J. Dynamics of bacterial microbiota during lignocellulosic waste composting: Studies upon its structure, functionality, and biodiversity. Bioresour. Technol. 2015, 175, 406–416. [Google Scholar] [CrossRef]
- Xi, B.D.; Zhao, X.Y.; He, X.S.; Huang, C.H.; Tan, W.B.; Gao, R.T.; Zhang, H.; Li, D. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. Bioresour. Technol. 2016, 219, 204–211. [Google Scholar] [CrossRef]
- Arjuna, B.H.; Chaw, E.H.M.; Kil, Y.K. Metagenomic analysis reveals enhanced biodiversity and composting efficiency of lignocellulosic waste by thermoacidophilic effective microorganism (tEM). J. Environ. Manag. 2020, 276, 111252. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, J.T.; Liu, L.; Lu, Y.; Lu, G.X. Effect of Compound Microbial Agent on Composting Process of Rape Straw and Pig Manure. Qinghai Agric. For. Sci. Technol. 2021, 4, 69–73. [Google Scholar]
- Meng, T.Y.; Li, S.Y.; Zou, R.S.; Yu, K.F.; Fu, B.Y.; Jie, Y. Effects of immobilized lignin-degrading bacteria on garden waste composting. J. Zhejiang A F Univ. 2021, 38, 38–46. [Google Scholar]
- Sun, P.; Sun, W.X.; Wang, B.; Shi, Z.C.; Gong, H.J. Study on the degradation effect of different microbial treatments on lignocellulose. Green Technol. 2020, 16, 234–237. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agro-Chemistrical Analysis; China Agriculture Press: Beijing, China, 2007. [Google Scholar]
- Kang, J.L. Effects of Different Composting Methods on the Maturity Characteristics of Organic Materials. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2020. [Google Scholar]
- Yu, J.; Dong, L.; Xiao, C.Z.; Song, Y.L.; Hong, P.Z.; Li, Y.H.; Chen, S.G.; Ding, F.J. Effects of Different Decomposition Agent on Compost. Humic. Acid 2018, 5, 19–23, 40. [Google Scholar]
- Chung, W.J.; Chang, S.W.; Chaudhary, D.K.; Shin, J.D.; Kim, H.; Karmegam, N.; Govarthanan, M.; Chandrasekaran, M.; Ravindran, B. Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure. Chemosphere 2021, 283, 131129. [Google Scholar] [CrossRef]
- Gong, X.Q. Effect of Exogenous Additives on earthworm composting of garden waste. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Zhang, Y.N. Studies on the Foundation of Simple Indexes and Mensuration of Compost Maturity. Master’s Thesis, China Agricultural University, Beijing, China, 2004. [Google Scholar]
- Chang, H.Q.; Zhu, X.H.; Wu, J.; Guo, D.Y.; Zhang, L.H.; Fang, Y. Dynamics of microbial diversity during the composting of agricultural straw. J. Integr. Agric. 2021, 20, 1121–1136. [Google Scholar] [CrossRef]
- Yun, C.X.; Yan, C.R.; Xue, Y.H.; Xu, Z.Y.; Jin, T.; Liu, Q. Effects of Exogenous Microbial Agents on Soil Nutrient and Microbial Community Composition in Greenhouse-Derived Vegetable Straw Composts. Sustainability 2021, 13, 2925. [Google Scholar] [CrossRef]
- Tong, B.X.; Wang, X.; Wang, S.Q.; Ma, L.; Ma, W.Q. Transformation of nitrogen and carbon during composting of manure litter with different methods. Bioresour. Technol. 2019, 293, 122046. [Google Scholar] [CrossRef]
- Teixeira, D.L.; de Matos, A.T.; Melo, E.D.C. Resistance to forced airflow through layers of composting organic material. Waste Manage. 2019, 36, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Jumnoodoo, V.; Mohee, R. Evaluation of FTIR spectroscopy as a maturity index for herbicide-contaminated composts. Environ. Waste Manag. 2011, 9, 89–99. [Google Scholar] [CrossRef]
- Karak, T.; Bhattacharyya, P.; Paul, R.K.; Das, T.; Saha, S.K. Evaluation of composts from agricultural wastes with fish pond sediment as bulking agent to improve compost quality. Clean-Soil Air Water 2013, 41, 711–723. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, H.Y.; Sun, X.Y.; Yu, Z.; Cao, J.X.; Zhang, L.; Zhao, K. Effects of bamboo vinegar and bacterial reagent addition on the physicochemical properties of green wastes compost. Trans. CSAE 2010, 26, 272–278. [Google Scholar] [CrossRef]
- Wang, Z.J. Effects of Different Additives on Garden Waste Composting. Master’s Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
- Zhang, L.; Cao, Y.B.; Wang, W.S.; Zhang, X.Y.; Wang, X.; Yao, P.Q.; Liu, S.; Wang, H.; Ma, L. Effect of chicken manure addition on humification of vegetable waste in composting process composting process. Chin. J. Eco-Agric. 2022, 30, 258–267. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.Y.; Li, B.Q.; Jin, H.M.; Dong, Y.W. Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting. Bioresour. Technol. 2021, 337, 125427. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.Y.; Sun, X.Y.; Yu, K.F.; Li, S.Y. Construction of special solid composite bacteria for degradation of garden waste and Its Composting effect. Environ. Sci. Res. 2021, 34, 1231–1237. [Google Scholar] [CrossRef]
- Yang, J.; Wei, S.Z. Promoting effect of additional lignocellulose decomposing bacteria on the composting system in plateau environment. Tibet. Sci. Technol. 2021, 10, 29–34. [Google Scholar]
- Zhang, X.X.; Liu, Z.W.; Zhu, Z.H.; Du, L.Z. Effects of mixed decomposition of leaf litters from Platycladus orientalis (L.) Franco and other trees on nutrient release. Acta Pedol. Sin. 2013, 50, 178–185. [Google Scholar]
- Babett, G.; Jenő, S.; Ágnes, V.; Erika, L.; András, S.; László, V. Effect of bacterial inoculation on co-composting of lavender (Lavandula angustifolia Mill.) waste and cattle manure. 3 Biotech 2021, 11, 306. [Google Scholar] [CrossRef]
- Wang, S.P.; Wang, L.; Sun, Z.Y.; Wang, S.T.; Shen, C.H.; Tang, Y.Q.; Kida, K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. Bioresour. Technol. 2021, 337, 125492. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Zhang, W.M.; Chang, X.Y.; Yin, S.Q.; Hai, L. Microbiological mechanism of reducing carbon and nitrogen loss by composting additives. Acta Sci. Circumstantiae 2021, 41, 4116–4127. [Google Scholar] [CrossRef]
- Hu, T.; Wang, X.J.; Zhen, L.S.; Gu, J.; Song, Z.L.; Sun, W.; Xie, J. Succession of diazotroph community and functional gene response to inoculating swine manure compost with a lignocellulose-degrading consortium. Bioresour. Technol. 2021, 337, 125469. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.Y.; Zhou, Q.X.; Yan, L.; Guan, L.Z. Changes in hippuric acid in composting processes of different animal bird manure. China Environ. Sci. 2007, 5, 642–647. [Google Scholar] [CrossRef]
- López-López, N.; López-Fabal, A. Compost based ecological growing media according EU eco-label requirements. Sci. Hortic. 2016, 212, 1–10. [Google Scholar] [CrossRef]
Tending Shreds | Moisture (%) | C/N | C/P | Total Nutrient (TN * + K2O + P2O5, %) |
---|---|---|---|---|
Before adjustment | 35 | 80:1 | 200:1 | 3.3 |
After adjustment | 70 | 40:1 | 100:1 | 3.5 |
Treatments | C/N | Germination Percentage (%) | Germination Index (%) |
---|---|---|---|
T1 * | 23 ± 0.16 b | 91 ± 3.06 a | 69 ± 1.93 c |
T2 * | 25 ± 0.21 b | 92 ± 4.16 a | 81 ± 2.33 a |
T3 * | 22 ± 0.68 b | 88 ± 0.58 a | 65 ± 6.82 c |
T4 * | 37 ± 1.82 a | 88 ± 4.73 a | 77 ± 7.93 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Bo, H.; Zhu, J.; Zhang, J.; Hu, J.; Mu, F.; Nie, L. Application of Additives in Platycladus orientalis (L.) Franco Tending Shreds Compost in Forest. Forests 2022, 13, 253. https://doi.org/10.3390/f13020253
Li X, Bo H, Zhu J, Zhang J, Hu J, Mu F, Nie L. Application of Additives in Platycladus orientalis (L.) Franco Tending Shreds Compost in Forest. Forests. 2022; 13(2):253. https://doi.org/10.3390/f13020253
Chicago/Turabian StyleLi, Xuan, Huijuan Bo, Jialei Zhu, Jiwei Zhang, Jun Hu, Fuyong Mu, and Lishui Nie. 2022. "Application of Additives in Platycladus orientalis (L.) Franco Tending Shreds Compost in Forest" Forests 13, no. 2: 253. https://doi.org/10.3390/f13020253
APA StyleLi, X., Bo, H., Zhu, J., Zhang, J., Hu, J., Mu, F., & Nie, L. (2022). Application of Additives in Platycladus orientalis (L.) Franco Tending Shreds Compost in Forest. Forests, 13(2), 253. https://doi.org/10.3390/f13020253