Revealing the Genetic Structure and Differentiation in Endangered Pinus bungeana by Genome-Wide SNP Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Extraction
2.2. SLAF Sequencing and Development of SNP Markers
2.3. Population Genetic Analyses
3. Results
3.1. Development of Polymorphic SLAF Tags and Selection of SNP Markers
3.2. Genetic Diversity Analysis
3.3. Population Structure Analysis
3.4. Phylogenetic Relationship and Principal Component Analysis
3.5. Geographic Differentiation
4. Discussion
4.1. Genetic Diversity of P. bungeana
4.2. Population Structure and Geographical Differentiation of P. bungeana
4.3. Suggestions on Conservation of P. bungeana Germplasm Resources
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, L.G.; Li, N.; Mill, R.R. Flora of China; Wu, C.Y., Raven, P.H., Eds.; Science Press and Missouri Botanical Garden Press: Beijing, China, 1999; Volume 4. [Google Scholar]
- Zhao, Y.; Zhang, X.Z.; Wang, X.A. A study on geographical distribution law of pinus bungeana natural forests in China. Acta Bot. Boreali Occident. Sin. 1995, 15, 161–166. [Google Scholar]
- Qin, H.N.; Yang, Y.; Dong, S.Y.; He, Q. Threatened Species List of China’s Higher Plants. Biodiv. Sci. 2017, 25, 696–744. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Gu, W.C. Conservation genetics of Pinus bungeana—evaluation and conservation of natural populations’ genetic diversity. Sci. Silvae Sin. 2005, 1, 57–64. [Google Scholar]
- Li, B.; Gu, W.C. Distribution characteristics and research progress of Pinus bungeana. For. Res. 2003, 16, 225–232. [Google Scholar]
- Zhao, H. Evaluation and Conservation Strategy of Genetic Resources of Pinus bungeana Zucc; Chinese Academy of Forestry: Beijing, China, 2012. [Google Scholar]
- Yang, Y.X.; Wang, M.L.; Liu, Z.L.; Zhu, J.; Yan, M.Y. Nucleotide polymorphism and phylogeographic history of an endangered conifer species Pinus bungeana. Biochem. Syst. Ecol. 2016, 64, 89–96. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Ralls, K.; Eldridge, M.; Dudash, M.R.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P. Genetic Management of Fragmented Animal and Plant Populations; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Li, B.; Gu, W.C.; Zhou, S.L. Conservation genetics of Pinus bungeana I. Gene protection analysis. Biodiversity 2003, 11, 28–36. [Google Scholar]
- Zhao, H.; Zheng, Y.Q.; Li, B.; Lin, F.R.; Zhang, C.H.; Cheng, P.P.; Huang, P. Genetic structure analysis of natural populations of Pinus bungeana in different geographical regions. J. Plant Genet. Resour. 2013, 14, 395–401. [Google Scholar]
- Liddell, E.; Cook, C.N.; Sunnucks, P. Evaluating the use of risk assessment frameworks in the identification of population units for biodiversity conservation. Wildl. Res. 2020, 47, 208–216. [Google Scholar] [CrossRef]
- Falk, D.A.; Holsinger, K.E. Genetics and Conservation of Rare Plants; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Hogbin, P.M.; Peakall, R. Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Conserv. Biol. 1999, 13, 514–522. [Google Scholar] [CrossRef]
- Li, B. Study on Genetic Diversity and the Sampling Strategy for Conserving Core Collection in Pinus bungeana; Beijing Forestry University: Beijing, China, 2002. [Google Scholar]
- Li, X.M.; Jin, Z.Y.; Su, A.R.; Yang, L.X.; Su, S.; Wang, L.; Zhang, J. Distribution characteristics and primer development of EST-SSR sequence of Pinus bungeana. For. Ecol. Sci. 2019, 34, 266–272. [Google Scholar]
- Zhang, X.X.; Liu, B.G.; Li, Y.; Liu, Y.; He, Y.X.; Qian, Z.H.; Li, J.X. Landscape genetics reveals that adaptive genetic divergence in Pinus bungeana (Pinaceae) is driven by environmental variables relating to ecological habitats. BMC Evol. Biol. 2019, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mammadov, J.; Aggarwal, R.; Buyyarapu, R.; Kumpatla, S. SNP markers and their impact on plant breeding. Int. J. Plant Genom. 2012, 2012, 728398. [Google Scholar] [CrossRef] [PubMed]
- Zavinon, F.; Adoukonou, S.H.; Keilwagen, J.; Lehnert, H.; Ordon, F.; Perovic, D. Genetic diversity and population structure in Beninese pigeon pea [Cajanus cajan (L.) Huth] landraces collection revealed by SSR and genome wide SNP markers. Genet. Resour. Crop. Evol. 2020, 67, 1–18. [Google Scholar] [CrossRef]
- Bradbury, I.R.; Hamilton, L.C.; Dempson, B.; Robertson, M.J.; Bourret, V.; Bernatchez, L.; Verspoor, E. Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol. Ecol. 2015, 24, 5130–5144. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, D.L.; Copp, G.H.; Handley, L.L.; Olsén, K.H.; Sayer, C.D.; Hänfling, B. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol. Ecol. 2016, 25, 2997–3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohling, J.; Small, M.; Bargen, J.V.; Louden, A.; DeHaan, P. Comparing inferences derived from microsatellite and RADseq datasets: A case study involving threatened bull trout. Conserv. Genet. 2019, 20, 329–342. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Bu, H.D.; Zhang, T.C.; Lao, Y.C.; Dong, W.X. Molecular analysis of evolution and origins of cultivated hawthorn (Crataegus spp.) and related species in China. Front. Plant Sci. 2019, 10, 443. [Google Scholar] [CrossRef] [Green Version]
- Rodger, Y.S.; Pavlova, A.; Sinclair, S.; Pickup, M.; Sunnucks, P. Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy. Heredity 2021, 126, 846–858. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, C.L.; Wendel, J.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Cornelis, A.A.; Banks, E.; Mark, A.D.; Robert, E.H.; Lunter, G.; Gabor, T.M.; Stephen, T.S.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhir, K.; Glen, S.; Li, M.; Christina, K.; Koichiro, T. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Pickrell, J.K.; Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.P.; Liu, J.L.; Wang, J.L.; Liu, C.J. Geographic variation of morphological characteristics of Pinus bungeana seeds and cones. J. Beijing For. Univ. 1998, 20, 28–34. [Google Scholar]
- Yang, Y.X.; Zhi, L.Q.; Jia, Y.; Zhong, Q.Y.; Liu, Z.L.; Yue, M.; Li, Z.H. Nucleotide diversity and demographic history of Pinus bungeana, an endangered conifer species endemic in China. J. Syst. Evol. 2020, 58, 282–294. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.Q.; Li, B.; Zhang, C.H.; Lin, F.R.; Yu, X.D.; Cheng, B.B.; Huang, P. Genetic diversity analysis of Pinus bungeana natural populations with EST-SSR markers. For. Res. 2014, 27, 474–480. [Google Scholar]
- Wang, R.N.; Bai, J.Q.; Wang, M.L.; Yan, X.H.; Dong, P.B.; Wang, N.; Li, Z.H. Evolutionary History of an Endemic Conifer Tree Pinus armandii in China. Acta Bot. Boreali Occident. Sin. 2019, 39, 42–51. [Google Scholar]
- Xia, H.H.; Wang, B.; Pan, J.; Zhao, W.; Li, Y.; Mao, J.F.; Wang, X.R. Combiningmitochondrial and nuclear genome analyses to dissect the effects of colonization, environment, and geography on population structure in Pinus tabuliformis. Evol. Appl. 2018, 11, 1931–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.J. Genetic Diversity and Population Structure of Natural Endangered Forest Tree Pinus bungeana in China; Northwestern University: Xi’an, China, 2013. [Google Scholar]
- Li, S.; Jakobsson, M. Estimating demographic parameters from large-scale population genomic data using Approximate Bayesian Computation. BMC Genet. 2012, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Accuracy of coalescent likelihood estimates: Do we need more sites, more sequences, or more loci? Mol. Biol. Evol. 2006, 23, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Bunnefeld, L.; Hearn, J.; Stone, G.; Hickerson, M.J. ABC inference of multi-population divergence with admixture from unphased population genomic data. Mol. Ecol. 2014, 18, 4458–4471. [Google Scholar] [CrossRef] [Green Version]
Populations | N | Ho ± SD | He ± SD | π ± SD | Fis |
---|---|---|---|---|---|
JF | 10 | 0.3537 ± 0.0589 | 0.3655 ± 0.0001 | 0.2427 ± 0.2123 | 0.0323 |
MJS | 10 | 0.3663 ± 0.1207 | 0.3914 ± 0.0014 | 0.2842 ± 0.2110 | 0.0632 |
LT | 12 | 0.3564 ± 0.0449 | 0.3587 ± 0.0001 | 0.2829 ± 0.1964 | 0.0063 |
WZS | 10 | 0.4245 ± 0.0367 | 0.3870 ± 0.0002 | 0.2838 ± 0.2099 | −0.0969 |
BWS | 10 | 0.3938 ± 0.0239 | 0.3681 ± 0.0001 | 0.2548 ± 0.2105 | −0.0697 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; El-Kassaby, Y.A.; Li, W. Revealing the Genetic Structure and Differentiation in Endangered Pinus bungeana by Genome-Wide SNP Markers. Forests 2022, 13, 326. https://doi.org/10.3390/f13020326
Tian Q, El-Kassaby YA, Li W. Revealing the Genetic Structure and Differentiation in Endangered Pinus bungeana by Genome-Wide SNP Markers. Forests. 2022; 13(2):326. https://doi.org/10.3390/f13020326
Chicago/Turabian StyleTian, Qian, Yousry A. El-Kassaby, and Wei Li. 2022. "Revealing the Genetic Structure and Differentiation in Endangered Pinus bungeana by Genome-Wide SNP Markers" Forests 13, no. 2: 326. https://doi.org/10.3390/f13020326
APA StyleTian, Q., El-Kassaby, Y. A., & Li, W. (2022). Revealing the Genetic Structure and Differentiation in Endangered Pinus bungeana by Genome-Wide SNP Markers. Forests, 13(2), 326. https://doi.org/10.3390/f13020326