Testing the Processing-Induced Roughness of Sanded Wood Surfaces Separated from Wood Anatomical Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Separation of Processing Roughness from Wood Anatomical Structure
2.2. Testing the Separation Method on Wood and Plastic Surfaces
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurau, L. Analysis of roughness of sanded oak and beech surfaces. PRO Ligno 2013, 9, 741–750. [Google Scholar]
- Magross, E. Evaluating of the surface roughness of sanded wood. Wood Res. 2015, 60, 783–790. [Google Scholar]
- Kamperidou, V.; Aidinidis, E.; Barboutis, I. Impact of Structural Defects on the Surface Quality of Hardwood Species Sliced Veneers. Appl. Sci. 2020, 10, 6265. [Google Scholar] [CrossRef]
- Krisch, J.; Csiha, C. Analysing wood surface roughness using an S3P Perthometer and computer based data processing. In Proceedings of the XIII Sesja Naukowa “Badania dla Meblarstwa”, Poznań, Poland, 26 November 1999; pp. 145–154. [Google Scholar]
- Gurau, L.; Mansfield-Williams, H.; Irle, M. Processing roughness of sanded wood surfaces. Holz als Roh- und Werkstoff 2005, 63, 43–52. [Google Scholar] [CrossRef]
- Sharif, S.; Tan, P.L. Evaluation of sanded wood surface roughness with anatomical filters. In Proceedings of the 1st International Conference on Advanced Manufacturing, Terengganu, Malaysia, 23–24 May 2011; pp. 23–24. [Google Scholar]
- Sandak, J.; Tanaka, C.; Ohtani, T. Sensor selection for evaluation of wood surface smoothness. In Proceedings of the 16th International Wood Machining Seminar, Matsue, Japan, 24–30 August 2003; Volume 2, pp. 679–688. [Google Scholar]
- Piratelly-Filho, A.; Sternadt, G.H.; Arencibia, R.V. Removing deep valleys in roughness measurements of soft and natural materials with mathematical filtering. Cienc. Eng. 2012, 21, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Gurau, L. The influence of earlywood and latewood upon the processing roughness parameters at sanding. PRO Ligno 2014, 10, 26–33. [Google Scholar]
- Gurau, L. The Roughness of Sanded Wood Surfaces. Ph.D. Thesis, Brunel University, London, UK, 2004. [Google Scholar]
- Sinn, G.; Sandak, J.; Ramananantoandro, T. Properties of wood surfaces—characterisation and measurement. A review COST Action E35 2004–2008: Wood machining—micromechanics and fracture. Holzforschung 2009, 63, 196–203. [Google Scholar] [CrossRef]
- Thibaut, B.; Denaud, L.; Collet, R.; Marchal, R.; Beauchêne, J.; Mothe, F.; Méausoone, P.J.; Martin, P.; Larricq, P.; Eyma, F. Wood machining with a focus on French research in the last 50 years. Ann. For. Sci. 2016, 73, 163–184. [Google Scholar] [CrossRef] [Green Version]
- Gurau, L.; Irle, M.; Buchner, J. The surface roughness of heat treated and untreated beech (Fagus sylvatica l.) wood after sanding. BioResources 2019, 14, 4512–4531. [Google Scholar] [CrossRef]
- Salca, E.A.; Hiziroglu, S. Analysis of surface roughness of black alder as function of various processing parameters. PRO Ligno 2012, 8, 68–79. [Google Scholar]
- Gurau, L.; Irle, M. Surface roughness evaluation methods for wood products: A review. Curr. For. Rep. 2017, 3, 119–131. [Google Scholar] [CrossRef]
- Thoma, H.; Peri, L.; Lato, E. Evaluation of wood surface roughness depending on species charcteristics. Maderas Cienc. Technol. 2015, 17, 285–292. [Google Scholar] [CrossRef] [Green Version]
- ASME B46.1:2009; Surface Texture. (Surface Roughness, Waviness, Lay). ASME B46 Committee: New York, NY, USA, 2009.
- Gurau, L.; Mansfield-Williams, H.; Irle, M. A comparison of laser triangulation and stylus scanning for measuring the roughness of sanded wood surfaces. In Proceedings of the 5th International Conference on the Development of Wood Science, Wood Technology and Forestry, Ljubliana, Slovenia, 5–7 September 2001; pp. 299–310. [Google Scholar]
- Sandak, J.; Tanaka, C. Evaluation of Surface Smoothness by Laser Displacement Sensor. In Proceedings of the 3rd International Science Conference, Zvolen, Slovakia, 17–19 October 2002. [Google Scholar]
- Gurau, L.; Mansfield-Williams, H.; Irle, M. Evaluating the roughness of sanded wood surfaces. In Wood Machining; Davim, P., Ed.; ISTE Ltd.: London, UK; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011; pp. 217–267. [Google Scholar] [CrossRef]
- Gurau, L.; Mansfield-Williams, H.; Irle, M. The influence of measuring resolution on the subsequent roughness parameters of sanded wood surfaces. Eur. J. Wood Wood Prod. 2013, 71, 5–11. [Google Scholar] [CrossRef]
- Gurau, L.; Mansfield-Williams, H.; Irle, M.; Cionca, M. Form error removal of sanded wood surfaces. Eur. J. Wood Wood Prod. 2009, 67, 219–227. [Google Scholar] [CrossRef]
- Gurau, L.; Mansfield-Williams, H.; Irle, M. Filtering the roughness of a sanded wood surface. Holz als Roh- und Werkstoff 2006, 64, 363–371. [Google Scholar] [CrossRef]
- Tan, P.L.; Sharif, S.; Sudin, I. Roughness models for sanded wood surfaces. Wood Sci Technol. 2012, 46, 129–142. [Google Scholar] [CrossRef]
- Gurau, L.; Csiha, C.; Mansfield-Williams, H. Processing roughness of sanded beech surfaces. Eur. J. Wood Wood Prod. 2015, 73, 395–398. [Google Scholar] [CrossRef]
- ISO/TS 16610-31:2010. Geometrical product specification (GPS)—Filtration. Part 31: Robust Profile Filters. Gaussian Regression Filters; International Standards Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Fujiwara, Y.; Fujii, Y.; Sawada, Y.; Okumura, S. Assessment of wood surface roughness: Comparison of tactile roughness and three-dimensional parameters derived using a robust Gaussian regression filter. J. Wood Sci. 2004, 50, 35–40. [Google Scholar] [CrossRef]
- ISO 16610-21:2011; Geometrical Product Specifications (GPS)—Filtration—Part 21: Linear Profile Filters: Gaussian Filters. International Organization for Standardization: Geneva, Switzerland, 2011.
- Gurau, L.; Irle, M.; Mansfield-Williams, H. Minimising the computation time of using a Robust Gaussian Regression Filter on sanded wood surfaces. PRO Ligno 2012, 8, 3–11. [Google Scholar]
- Fujiwara, Y.; Ishii, A.; Sawada, Y. Novel filtering methods of evaluating surface roughness of wood. Evaluation based on tactile roughness and 3D measurement of surface roughness. In Proceedings of the 14th International Wood Machining Seminar, Paris, France, 12–19 September 1999. [Google Scholar]
- Schadoffsky, O. Topographiebewertung zur Prozeβbeurteilung Beim Fräsen und Schleifen von Massivholz. Ph.D. Thesis, Technische Universität Braunschweig, Essen, Germany, 2000. [Google Scholar]
- Costes, J.P.; Larricq, P. Surface characterisation with 3-dimensional roughness parameters. In Proceedings of the 15th International Wood Machining Seminar, Los Angeles, CA, USA, 30 July–1 August 2001. [Google Scholar]
- Fujiwara, Y.; Fujii, Y.; Okumura, S. Relationship between roughness parameters based on material ratio curve and tactile roughness for sanded surfaces of two hardwoods. J. Wood Sci. 2005, 51, 274–277. [Google Scholar] [CrossRef]
- Goli, G.; Sandak, J. Proposal of a new method for the rapid assessment of wood machinability and cutting tool performance in peripheral milling. Eur. J. Wood Wood Prod. 2016, 74, 867–874. [Google Scholar] [CrossRef]
- ISO 13565-2:1996 + Cor 1:1998; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method. Surfaces Having Stratified Functional Properties. Part 2: Height Characterisation Using the Linear Material Ratio Curve. International Standards Organisation: Geneva, Switzerland, 1996.
- Westkämper, E.; Riegel, A. Qualitätskriterien fur Geschlieffene Massivholzoberflächen. Holz als Roh- und Werkstoff 1993, 51, 121–125. [Google Scholar] [CrossRef]
- Riegel, A. Quality measurement in surface technologies. In Proceedings of the International Conference on Woodworking Technologies, Ligna, Hannover, Germany, 20–23 April 1993. [Google Scholar]
- ISO 13565–3:1998. Geometrical Product Specifications (GPS)—Profile Method. Surfaces Having Stratified Functional Properties; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Muralikrishnan, B.; Raja, J. Functional Filtering and Performance Correlation of Plateau Honed Surface Profiles. J. Manuf. Sci. Eng. 2005, 127, 193–197. [Google Scholar] [CrossRef]
- Gurau, L. Replacing outlying wood anatomy in the evaluation of processing roughness data at sanding. PRO Ligno 2015, 11, 11–20. [Google Scholar]
- Stewart, H.A. Abrasive planing across the grain with higher grit numbers can reduce finish sanding. For. Prod. J. 1976, 26, 49–51. [Google Scholar]
- ISO 3274:1996+ Cor 1: 1998; Geometrical Product Specifications (GPS)—Surface Texture. Profile Method. Nominal Characteristics of Contact (Stylus) Instruments. International Organization for Standardization: Geneva, Switzerland, 1996.
- ISO 4287: 1997+ Amd1: 2009; Geometrical Product Specifications (GPS). Surface Texture. Profile Method. Terms. Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 1997.
- Cool, J.; Hernandez, R.E. Improving the sanding process of black spruce wood for surface quality and water-based coating adhesion. For. Prod. J. 2011, 61, 372–380. [Google Scholar] [CrossRef]
- Gurau, L.; Mansfield-Williams, H.; Irle, M. Separation of processing roughness from anatomical irregularities and fuzziness to evaluate the effect of grit size on sanded European oak. For. Prod. J. 2007, 57, 110–116. [Google Scholar]
- De Moura, L.F.; Hernandez, R.E. Effects of abrasive mineral, grit size and feed speed on the quality of sanded surfaces of sugar maple wood. Wood Sci. Technol. 2006, 40, 517–530. [Google Scholar] [CrossRef]
- Kilic, M.; Hiziroglu, S.; Burdurlu, E. Effect of machining on surface roughness of wood. Build. Environ. 2006, 41, 1074–1078. [Google Scholar] [CrossRef]
- Ratnasingam, J. Optimal surface roughness for high-quality finish on rubberwood (Hevea brasiliensis). Holz-als-Roh Werkstoff 2006, 64, 343–345. [Google Scholar] [CrossRef]
- Sulaiman, O.; Hashim, R.; Subari, K.; Liang, C.K. Effect of sanding on surface roughness of rubberwood. J. Mater. Process. Technol. 2009, 8, 3949–3955. [Google Scholar] [CrossRef]
- Varasquim, F.M.F.A.; Alves, M.C.S.; Gonçalves, M.T.T.; Santiago, L.F.F.; de Souza, A.J.D. Influence of belt speed, grit sizes and pressure on the sanding of Eucalyptus grandis wood. CERNE 2012, 18, 231–237. [Google Scholar] [CrossRef]
- Vitosyte, J.; Ukvalbergiene, K.; Keturakis, G. The effects of surface roughness on adhesion strength of coated ash (Fraxinus excelsior L.) and birch (Betula L.) wood. Mater. Sci. 2012, 18, 347–351. [Google Scholar] [CrossRef]
- De Moura Palermo, G.P.; de Figueiredo Latorraca, J.V.; de Moura, L.F.; Nolasco, A.M.; de Carvalho, A.M.; Garcia, R.A. Surface roughness of heat treated Eucalyptus grandis wood. Maderas. Cienc. Tecnol. 2014, 16, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Miao, T.; Li, L. Study on influencing factors of sanding efficiency of abrasive belts in wood materials sanding. Wood Res. 2014, 59, 835–842. [Google Scholar]
Parameter | Material and Grit Size | |||||
---|---|---|---|---|---|---|
Oak P1000 | Beech P1000 | Spruce P1000 | Oak P120 | Plastic P120 (a) | Plastic P120 (b) | |
Ra | 0.463 (7.671) | 0.297 (11.74) | 1.333 (27.42) | 5.311 (11.37) | 5.257 (1.558) | 4.823 (7.660) |
Rq | 0.551 (8.432) | 0.352 (10.73) | 1.555 (25.16) | 6.126 (9.864) | 6.576 (1.676) | 5.629 (6.730) |
Rku | 2.291 (6.063) | 2.345 (8.313) | 2.352 (8.619) | 2.079 (3.317) | 3.061 (8.037) | 2.072 (4.56) |
Rt | 2.262 (12.47) | 1.478 (15.44) | 6.087 (22.87) | 24.40 (10.80) | 44.28 (13.20) | 21.06 (10.85) |
Rk | 1.422 (6.969) | 0.919 (7.688) | 3.068 (9.686) | 16.61 (6.569) | 17.19 (2.726) | 16.02 (3.818) |
Rpk | 0.261 (25.50) | 0.233 (16.41) | 0.835 (11.26) | 2.730 (21.70) | 5.230 (7.199) | 2.529 (40.85) |
Rvk | 0.549 (18.08) | 0.31 (25.07) | 2.285 (27.24) | 4.235 (23.71) | 7.056 (9.153) | 2.872 (36.22) |
UT | 0.996 (10.55) | 0.781 (8.949) | 2.404 (7.381) | 11.491 (9.224) | − | 10.321 (9.064) |
LT | −1.16 (16.31) | −0.696 (29.02) | −2.908 (28.38) | −12.91 (15.44) | − | −10.463 (15.41) |
Number of profiles | 20 | 12 | 12 | 12 | 12 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurau, L. Testing the Processing-Induced Roughness of Sanded Wood Surfaces Separated from Wood Anatomical Structure. Forests 2022, 13, 331. https://doi.org/10.3390/f13020331
Gurau L. Testing the Processing-Induced Roughness of Sanded Wood Surfaces Separated from Wood Anatomical Structure. Forests. 2022; 13(2):331. https://doi.org/10.3390/f13020331
Chicago/Turabian StyleGurau, Lidia. 2022. "Testing the Processing-Induced Roughness of Sanded Wood Surfaces Separated from Wood Anatomical Structure" Forests 13, no. 2: 331. https://doi.org/10.3390/f13020331
APA StyleGurau, L. (2022). Testing the Processing-Induced Roughness of Sanded Wood Surfaces Separated from Wood Anatomical Structure. Forests, 13(2), 331. https://doi.org/10.3390/f13020331