Communities of Mycorrhizal Fungi among Seedlings of Scots Pine (Pinus sylvestris L.) Growing on a Clearcut in Microsites Generated by Different Site-Preparation Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Treatments
2.3. Sampling of Plant Material
2.4. Mycorrhizal Assessment
2.5. Molecular Identification of Mycorrhizal Fungi
2.6. Soil Analysis
2.7. Data Analysis
3. Results
3.1. Soil Properties
3.2. Mycorrhizal Colonisation of Roots
3.3. Composition of the Mycorrhizal Assemblage
4. Discussion
Practical Implications for Silviculture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krakau, U.K.; Liesebach, M.; Aronen, T.; Lelu-Walter, M.A.; Schneck, V. Scots Pine (Pinus sylvestris L.). In Forest Tree Breeding in Europe. Managing Forest Ecosystems; Pâques, L., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 25, pp. 267–323. [Google Scholar]
- Rozkrut, D. (Ed.) Statistical Yearbook of Forestry; Zakład Wydawnictw Statystycznych: Warsaw, Poland, 2019; pp. 39–40. [Google Scholar]
- Trappe, J.M. Fungus associates of ectotrophic mycorrhizae. Bot. Rev. 1962, 28, 538–606. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; pp. 189–385. [Google Scholar]
- Spathelf, P.; Ammer, C. Forest management of Scots pine (Pinus sylvestris L.) in northern Germany–a brief review of the history and current trends. Forstarchiv 2015, 86, 59–66. [Google Scholar] [CrossRef]
- Jones, M.D.; Durall, D.M.; Cairney, J.W.G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 2003, 157, 399–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cline, E.T.; Ammirati, J.F.; Edmonds, R.L. Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol. 2005, 166, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C. Mycorrhizas in natural ecosystems. In Advances in Ecological Research; Begon, M., Fitter, A.H., Macfadyen, A., Eds.; Academic Press Limited: London, UK, 1991; Volume 21, pp. 171–313. [Google Scholar]
- Harvey, A.E.; Jurgensen, M.F.; Larsen, M.J. Clearcut harvesting and ectomycorrhizae: Survival of activity on residual roots and influence on a bordering forest stand in western Montana. Can. J. For. Res. 1980, 10, 300–303. [Google Scholar] [CrossRef]
- Hagerman, S.M.; Jones, M.D.; Bradfield, G.E.; Gillespie, M.; Durall, D.M. Effects of clear−cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can. J. For. Res. 1999, 29, 124–134. [Google Scholar] [CrossRef]
- Parke, J.L.; Linderman, R.G.; Trappe, J.M. Inoculum potential of ectomycorrhizal fungi in forest soils of southwest Oregon and northern California. Forest. Sci. 1984, 30, 300–304. [Google Scholar] [CrossRef]
- Perry, D.A.; Molina, R.; Amaranthus, M.P. Mycorrhizae, mycorrhizospheres, and reforestation; current knowledge and research needs. Can. J. For. Res. 1987, 17, 929–940. [Google Scholar] [CrossRef]
- Ingleby, K.; Munro, R.C.; Noor, M.; Mason, P.A.; Clearwater, M.J. Ectomycorrhizal populations and growth of Shorea parvifolia (Dipterocarpaceae) seedlings regenerating under three different forest canopies following logging. For. Ecol. Manage. 1998, 111, 171–179. [Google Scholar] [CrossRef]
- Collier, F.A.; Bidartondo, M.I. Waiting for fungi: The ectomycorrhizal invasion of lowland heathlands. J. Ecol. 2009, 97, 950–963. [Google Scholar] [CrossRef] [Green Version]
- Danielson, R.M.; Visser, S. The mycorrhizal and nodulation status of container−grown trees and shrubs reared in commercial nurseries. Can. J. For. Res. 1990, 20, 609–614. [Google Scholar] [CrossRef]
- Ballard, T.M. Impacts of forest management on northern forest soils. For. Ecol. Manage. 2000, 133, 37–42. [Google Scholar] [CrossRef]
- Parke, J.L.; Linderman, R.G.; Trappe, J.M. Effect of root zone temperature on ectomycorrhiza and vesicular−arbuscular mycorrhiza formation in disturbed and undisturbed forest soils of southwest Oregon. Can. J. For. Res. 1983, 13, 657–665. [Google Scholar] [CrossRef]
- Garbaye, J.; Bowen, G.D. Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Can. J. For. Res. 1987, 17, 941–943. [Google Scholar] [CrossRef]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New. For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Ammer, C.; Balandier, P.; Bentsen, N.S.; Coll, L.; Löf, M. Forest vegetation management under debate: An introduction. Eur. J. Forest. Res. 2011, 130, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, U.; Örlander, G. Vegetation management on grass-dominated clearcuts planted with Norway spruce in southern Sweden. Can. J. For. Res. 1999, 29, 1015–1026. [Google Scholar] [CrossRef]
- Steijlen, I.; Nilsson, M.-C.; Zackrisson, O. Seed regeneration of Scots pine in boreal forest stands dominated by lichen and feather moss. Can. J. For. Res. 1995, 25, 713–723. [Google Scholar] [CrossRef]
- Jäderlund, A.; Norberg, G.; Zackrisson, O.; Dahlberg, A.; Teketay, D.; Dolling, A.; Nilsson, M.C. Control of bilberry vegetation by steam treatment–effects on seeded Scots pine and associated mycorrhizal fungi. For. Ecol. Manage. 1998, 108, 275–285. [Google Scholar] [CrossRef]
- Archibold, O.W.; Acton, C.; Ripley, E.A. Effect of site preparation on soil properties and vegetation cover, and the growth and survival of white spruce (Picea glauca) seedlings, in Saskatchewan. For. Ecol. Manage. 2000, 131, 127–141. [Google Scholar] [CrossRef]
- Block, M.D.; Van Rees, K.C.J. Mechanical site preparation impacts on soil properties and vegetation communities in the Northwest Territories. Can. J. For. Res. 2002, 32, 1381–1392. [Google Scholar] [CrossRef]
- MacKenzie, M.D.; Schmidt, M.; Bedford, L. Soil microclimate and nitrogen availability 10 years after mechanical site preparation in northern British Columbia. Can. J. For. Res. 2005, 35, 1854–1866. [Google Scholar] [CrossRef]
- Heiskanen, J.; Mäkitalo, K.; Hyvönen, J. Long-term influence of site preparation on water-retention characteristics of forest soil in Finnish Lapland. For. Ecol. Manage. 2007, 241, 127–133. [Google Scholar] [CrossRef]
- Sutton, R.F. Mounding site preparation: A review of European and North American experience. New For. 1993, 7, 151–192. [Google Scholar] [CrossRef]
- Bedford, L.; Sutton, R.F. Site preparation for establishing lodgepole pine in the sub-boreal spruce zone of interior British Columbia: The Bednesti trial, 10-year results. For. Ecol. Manage. 2000, 126, 227–238. [Google Scholar] [CrossRef]
- Lazaruk, L.W.; Macdonald, S.E.; Kernaghan, G. The effect of mechanical site preparation on ectomycorrhizae of planted white spruce seedlings in conifer-dominated boreal mixedwood forest. Can. J. For. Res. 2008, 38, 2072–2079. [Google Scholar] [CrossRef]
- Twieg, B.D.; Durall, D.M.; Smard, S.W.; Jones, M.D. Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza 2009, 19, 305–316. [Google Scholar] [CrossRef]
- Thapar, H.S.; Rehill, P.S. Studies on vertical distribution of mycorrhiza in soil attrition rate for predicting site quality. J. Tree. Sci. 1984, 3, 89–92. [Google Scholar]
- Dahlberg, A.; Jonsson, L.; Nylund, J.−E. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old−growth Norway spruce forest in south Sweden. Can. J. Bot. 1997, 75, 1323–1335. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Hyakumachi, M. Distribution of ectomycorrhizas and ectomycorrhizal fungal inoculum with soil depth in a birch forest. J. For. Res. 1998, 3, 243–245. [Google Scholar] [CrossRef]
- Harvey, A.E.; Page−Dumroese, D.S.; Jurgensen, M.F.; Graham, R.T.; Tonn, J.R. Site preparation alters biomass, root and ectomycorrhizal development of outplanted western white pine and Douglas−fir. New For. 1996, 11, 255–270. [Google Scholar]
- Pennanen, T.; Heiskanen, J.; Korkama, T. Dynamics of ectomycorrhizal fungi and growth of Norway spruce seedlings after planting on a mounded forest clearcut. For. Ecol. Manage. 2005, 213, 243–252. [Google Scholar] [CrossRef]
- Management Plan for Spychowo Forest District for years 2013–2022 Stand description data. An internal document for Spychowo Forest District elaborated by the Bureau for Forest Management and Geodesy in Olsztyn 2013. Available online: https://www.gov.pl/web/nadlesnictwo-spychowo/plan-urzadzenia-lasu (accessed on 18 January 2022).
- Aleksandrowicz-Trzcińska, M.; Drozdowski, S.; Studnicki, M.; Żybura, H. Effects of site preparation methods on the establishment and natural-regeneration traits of Scots pine (Pinus sylvestris L.) in northeastern Poland. Forests 2018, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Agerer, R. Colour Atlas of Ectomycorrhizae: With Glossary; Einhorn-Verlag: Schwäbisch Gmünd, Germany, 1987–2008. [Google Scholar]
- White, T.J.; Burns, T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Ishida, T.A.; Nara, K.; Tanaka, M.; Kinoshita, A.; Hogetsu, T. Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol. 2008, 180, 491–500. [Google Scholar] [CrossRef]
- Heinonsalo, J.; Sen, R. Scots pine ectomycorrhizal fungal inoculum potential and dynamics in podzol-specific humus, eluvial and illuvial horizons one and four growth seasons after forest clear-cut logging. Can. J. For. Res. 2007, 37, 404–414. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Hynson, N.A.; Bruns, T.D. Stayin’ alive: Survival of mycorrhizal fungal propagules from 6-yr-old forest soil. Fungal Ecol. 2012, 5, 741–746. [Google Scholar] [CrossRef]
- Rosling, A.; Landeweert, R.; Lindahl, B.D.; Larsson, K.-H.; Kuyper, T.W.; Taylor, A.F.S.; Finalay, R.D. Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol. 2003, 159, 775–783. [Google Scholar] [CrossRef]
- Baar, J.; de Vries, F.W. Effects of manipulation of litter and humus layers on ectomycorrhizal colonization potential in Scots pine stands of different age. Mycorrhiza 1995, 5, 267–272. [Google Scholar] [CrossRef]
- Oleskog, G.; Sahlén, K. Effect of seedbed substrate on moisture conditions and germination of Pinus sylvestris (L.) seeds in clear-cut. Scand. J. For. Res. 2000, 15, 225–236. [Google Scholar] [CrossRef]
- de Chantal, M.; Leinonen, K.; Ilvesniemi, H.; Westman, C.J. Effects of site preparation on soil properties and on morphology of Pinus silvestris and Picea abies seedlings sown at different dates. New For. 2004, 27, 159–173. [Google Scholar] [CrossRef]
- Kjøller, R.; Nilsson, L.-O.; Hansen, K.; Schmidt, I.K.; Vesterdal, L.; Gundersen, P. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol. 2012, 194, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Baar, J. Ectomycorrhizal root growth in Scots pine stands in response to manipulation of litter and humus layers. Mycorrhiza 1997, 7, 89–94. [Google Scholar] [CrossRef]
- Lundmark-Thelin, A.; Johansson, M.B. Influence of mechanical site preparation on decomposition and nutrient dynamics of Norway spruce (Picea abies (L.) Karst.) needle litter and slash needles. For. Ecol. Manage. 1997, 97, 101–110. [Google Scholar] [CrossRef]
- Aleksandrowicz-Trzcińska, M.; Drozdowski, S.; Żybura, H. Wpływ mechanicznego przygotowania gleby na zrębie na jej cechy. Sylwan 2018, 162, 648–657. [Google Scholar]
- Lilleskov, E.A.; Fahey, T.J.; Horton, T.R.; Lovett, G.M. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 2002, 83, 104–115. [Google Scholar] [CrossRef]
- Sewerniak, P.; Gonet, S.S.; Quaium, M. Wpływ przygotowania gleby frezem leśnym na wzrost sadzonek sosny zwyczajnej w warunkach ubogich siedlisk Puszczy Bydgoskiej. Sylwan 2012, 156, 871–880. [Google Scholar]
- Baier, R.; Ettl, R.; Hahn, C.; Göttlein, A. Early development and nutrition of Norway spruce (Picea abies (L.) Karst.) seedlings on different seedbeds in the Bavarian limestone Alps–a bioassay. Ann. For. Sci. 2006, 63, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.E.; Page−Dumroese, D.S.; Jurgensen, M.F.; Graham, R.T.; Tonn, J.R. Site preparation alters soil distribution of roots and ectomycorrhizae on outplanted western white pine and Douglas-fir. Plant Soil 1997, 188, 107–117. [Google Scholar] [CrossRef]
- Mah, K.; Tackaberry, L.E.; Egger, K.N.; Massicotte, H.B. The impacts of broadcast burning after clear-cutting on the diversity of ectomycorrhizal fungi associated with hybrid spruce seedlings in central British Columbia. Can. J. For. Res. 2001, 31, 224–235. [Google Scholar] [CrossRef]
- Heinonsalo, J.; Koskiahde, I.; Sen, R. Scots pine bait seedling performance and root colonizing ectomycorrhizal fungal community dynamics before and during the 4 years after forest clear-cut logging. Can. J. For. Res. 2007, 37, 415–429. [Google Scholar] [CrossRef]
- Reis, F.; Valdiviesso, T.; Varela, C.; Tavares, R.M.; Baptista, P.; Lino-Neto, T. Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes. Mycorrhiza 2018, 28, 357–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosinger, C.; Sandén, H.; Matthews, B.; Mayer, M. Patterns in ectomycorrhizal diversity, community composition, and exploration types in European beech, pine, and spruce forests. Forests 2018, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P. Ectomycorrhizal fungi and interspecific competition: Species interactions, community structure, coexistence mechanisms, and future research directions. New Phytol. 2010, 187, 895–910. [Google Scholar] [CrossRef]
- Koide, R.T.; Fernandez, C.; Petprakob, K. General principles in the community ecology of ectomycorrhizal fungi. Ann. For. Sci. 2011, 68, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.K.M.; Jones, M.D. Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites. Oecologia 2013, 173, 1499–1511. [Google Scholar] [CrossRef]
- Hambleton, S.; Sigler, L. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (≡ Hymenoscyphus ericae), Leotiomycetes. Stud. Mycol. 2005, 53, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Fehrer, J.; Réblová, M.; Bambasová, V.; Vohník, M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud. Mycol. 2019, 92, 195–225. [Google Scholar] [CrossRef]
- Grelet, G.-A.; Johnson, D.; Vrålstad, T.; Alexander, I.J.; Anderson, I.C. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: Spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 2010, 188, 210–222. [Google Scholar] [CrossRef]
- Vohník, M.; Mrnka, L.; Lukešová, T.; Bruzone, M.C.; Kohout, P.; Fehrer, L. The cultivable endophytic community of Norway spruce ectomycorrhizas from microsites lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 2013, 6, 281–292. [Google Scholar] [CrossRef]
- Sietiö, O.-M.; Tuomivirta, T.; Santalahti, M.; Kiheri, H.; Timonen, S.; Sun, H.; Fritze, H.; Heinonsalo, J. Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. New Phytol. 2018, 218, 738–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudawska, M.; Leski, T. Ectomycorrhizal fungal assemblages of nursery grown Scots pine are influenced by age of the seedlings. Forests 2021, 12, 134. [Google Scholar] [CrossRef]
- Barker, J.S.; Simard, S.W.; Jones, M.D.; Durall, D.M. Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 2013, 172, 1179–1189. [Google Scholar] [CrossRef]
- Colpaert, J.V. Thelephora. In Ectomycorrhizal Fungi. Key Genera in Profile; Cairney, J.W.G., Chambers, S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 245–325. [Google Scholar]
- Heinonsalo, J.; Jørgensen, K.S.; Sen, R. Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbio. Ecol. 2001, 36, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vašutowá, M.; Edwards-Jonášová, M.; Veselá, P.; Effenberková, L.; Fleischer, P.; Cudlin, P. Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. Mycorrhiza 2018, 28, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Smith II, A.J.; Potvin, L.R.; Lilleskov, E. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition. Mycorrhiza 2015, 25, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, U.; Walter, L.; Kottke, I. Molecular and morphological discrimination between Tylospora fibrillosa and Tylospora asterophora mycorrhizae. Can. J. Bot. 1999, 77, 11–21. [Google Scholar] [CrossRef]
- Ważny, R. Ectomycorrhizal communities associated with silver seedlings (Abies alba Mill.) differ largely in mature silver fir stands. Ann. For. Sci. 2014, 71, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Lilleskov, E.A.; Bruns, T.D. Nitrogen and ectomycorrhizal fungal communities: What we know, what we need to know. New Phytol. 2001, 149, 154–158. [Google Scholar] [CrossRef]
- Toljander, J.F.; Eberhardt, U.; Toljander, Y.K.; Paul, L.R.; Taylor, F.S. Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol. 2006, 170, 873–884. [Google Scholar] [CrossRef]
- Hille, M.; Ouden, J. Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification. Eur. J. Forest. Res. 2004, 123, 213–218. [Google Scholar] [CrossRef]
- Caccia, F.D.; Ballaré, C.L. Effects of tree cover, understory vegetation, and litter on regeneration of Douglas-fir (Pseudotsuga manziessii) in southwestern Argentina. Can. J. For. Res. 1998, 28, 683–692. [Google Scholar] [CrossRef]
- Ibáñez, I.; Schupp, E.W. Effects of litter, soil surface conditions, and microhabitat on Cerocarpus ledifolius Nutt. Seedling emergence and establishment. J. Arid Environ. 2002, 52, 209–221. [Google Scholar] [CrossRef]
- Aleksandrowicz-Trzcińska, M.; Drozdowski, S.; Brzezinecki, B.; Rutkowska, P.; Jabłońska, B. Effects of different methods of site preparation on natural regeneration of Pinus sylvestris in Eastern Poland. Dendrobiology 2014, 71, 73–81. [Google Scholar] [CrossRef] [Green Version]
Feature | Forest Plough | Active Plough | Forest Mill | Without MSP | p | |||
---|---|---|---|---|---|---|---|---|
Ridge | Furrow | Ridge | Furrow | Strip | Outside the Strip | |||
pH (KCl) | 3.31 (0.14) a | 3.86 (0.32) bc | 3.31 (0.18) a | 3.98 (0.11) c | 3.67 (0.17) abc | 3.52 (0.18) ab | 3.35 (0.24) a | <0.0001 |
Norg (g kg−1 dw) | 1.64 (0.31) c | 0.46 (0.10) a | 2.23 (0.86) d | 0.54 (0.12) ab | 0.96 (0.28) ab | 1.07 (0.24) b | 0.96 (0.13) ab | <0.0001 |
Corg (g kg−1 dw) | 31.58 (5.34) b | 9.32 (2.11) a | 46.11 (19.81) c | 10.91 (2.41) a | 20.20 (5.77) ab | 22.37 (5.76) ab | 20.71 (3.03) ab | <0.0001 |
C/N | 19.1 (1.10) a | 20.8 (2.13) a | 20.3 (1.31) a | 20.6 (2.13) a | 20.6 (1.15) a | 20.6 (1.66) a | 21.8 (0.64) a | 0.1125 |
P2O5 (mg100 g−1 dw) | 5.76 (1.57) a | 7.89 (1.30) a | 7.31 (1.27) a | 7.73 (1.04) a | 7.46 (1.52) a | 6.53 (1.9) a | 6.81 (1.64) a | 0.3225 |
Ca2+ (mg100 g−1 dw) | 12.78 (5.33) bc | 1.74 (0.38) a | 20.56 (9.24) c | 2.33 (0.98) a | 7.19 (3.28) ab | 5.41 (1.83) ab | 5.70 (1.71) ab | 0.0139 |
K+ (mg100 g−1 dw) | 5.69 (1.60) b | 1.06 (0.30) a | 8.35 (3.28) c | 1.41 (0.26) a | 3.05 (0.81) a | 2.60 (0.61) a | 2.45 (0.50) a | <0.0001 |
Mg2+ (mg100 g−1 dw) | 1.82 (0.65) b | 0.22 (0.05) a | 3.13 (1.29) c | 0.31 (0.09) a | 1.08 (0.44) ab | 0.86 (0.27) ab | 0.81 (0.22) ab | <0.0001 |
Na+ (mg100 g−1 dw) | 0.23 (0.11) c | 0.12 (0.09) abc | 0.21 (0.10) bc | 0.04 (0.14) a | 0.21 (0.08) bc | 0.18 (0.08) bc | 0.09 (0.09) ab | <0.0001 |
Ea (me 100 g−1) | 2.90 (0.59) bc | 1.67 (0.39) a | 3.23 (0.51) bc | 1.86 (0.28) a | 2.66 (0.43) b | 3.16 (0.46) bc | 3.52 (0.50) c | <0.0001 |
Bd (g cm−3) | 0.80 (0.25) a | 1.35 (0.07) c | 0.79 (0.33) a | 1.29 (0.11) bc | 1.06 (0.13) abc | 0.91 (0.17) ab | 1.05 (0.19) abc | <0.0001 |
Am (g 100 cm−3) | 14.6 (10.10) a | 12.9 (3.71) a | 15.2 (7.07) a | 13.8 (4.20) a | 14.7 (7.18) a | 16.7 (10.24) a | 20.4 (9.08) a | 0.4512 |
Sand (%) | 92.5 (1.01) b | 94.9 (0.90) c | 90.1 (2.30) a | 94.1 (0.80) bc | 93.6 (0.87) bc | 94.0 (1.11) bc | 93.5 (0.84) bc | <0.0001 |
Silt (%) | 2.54 (0.80) a | 1.47 (0.59) a | 4.94 (1.94) b | 1.82 (0.74) a | 2.48 (0.84) a | 1.79 (1.09) a | 2.57 (0.73) a | 0.0365 |
Clay (%) | 4.96 (1.40) a | 3.66 (0.59) a | 4.93 (0.77) a | 4.10 (0.47) a | 3.94 (0.45) a | 4.23 (0.37) a | 3.98 (0.37) a | 0.411 |
Fungal Taxa | Accession Numer | Best Match Sequence/Accession Number | Sequence Similarity (%) | Query Coverage (%) | Relative Abundance | Frequency |
---|---|---|---|---|---|---|
Ascomycetes 85.9% | ||||||
Acephala macrosclerotiorum | OK042934 | HM189696 | 100 | 99 | 0.18 | 0.46 |
Cenococcum geophilum | OK042935 | MK131421 | 99 | 98 | 1.65 | 16.00 |
Helotiales sp. | OK042936 | HF947839 | 100 | 99 | 0.28 | 0.92 |
Hyaloscypha bicolor | OK042937 | MH018932 | 100 | 99 | 2.20 | 8.15 |
Hyaloscypha finlandica | OK042938 | EU557316 | 99 | 97 | 0.14 | 2.00 |
Hyaloscypha variabilis | MK529874 | MK131649 | 99 | 99 | 0.89 | 3.38 |
Hyaloscypha sp. | OK042939 | MH029252 | 100 | 99 | 0.21 | 1.08 |
Wilcoxina mikolae | OK042940 | JQ310818 | 100 | 99 | 79.76 | 96.77 |
Wilcoxina rehmii | MK529903 | JX129137 | 100 | 100 | 0.53 | 0.62 |
Wilcoxina sp. | MK529904 | MT278225 | 98 | 99 | 0.09 | 0.15 |
Basidiomycetes 14.1% | ||||||
Amanita pantherina | MK529846 | AB080775 | 100 | 99 | 0.18 | 1.08 |
Amanita spissa | OK042941 | KX449404 | 100 | 99 | ˂0.01 | 0.15 |
Boletus edulis | MK529848 | AF438565 | 100 | 100 | 0.04 | 0.46 |
Boletus ferrugineus | MK529849 | AJ889934 | 100 | 99 | 0.01 | 0.15 |
Cantharellus cibarius | OK042942 | MT644929 | 100 | 100 | 0.53 | 0.31 |
Cortinarius bataillei | OK042943 | MN751017 | 100 | 100 | ˂0.01 | 0.15 |
Cortinarius cinnamomeus | MK529853 | HQ604649 | 100 | 100 | 0.39 | 1.54 |
Cortinarius croceus | MK529854 MK529860 | MT908274 | 100 | 100 | 0.07 | 0.77 |
Inocybe lacera | MK529863 | GQ267473 | 100 | 100 | 0.58 | 1.23 |
Inocybe umbrina | MK529864 | HQ604524 | 98 | 99 | 0.06 | 0.31 |
Laccaria proxima | MK529866 | JQ310816 | 100 | 99 | 0.25 | 0.46 |
Lactarius rufus | OK042944 | MN992614 | 100 | 99 | 0.15 | 0.15 |
Paxillus involutus | MK529876 | HQ604826 | 100 | 99 | 0.04 | 0.62 |
Piloderma olivaceum | MK529879 | KP814428 | 99 | 99 | ˂0.01 | 0.15 |
Piloderma sphaerosporum | MK529880 | JQ711875 | 100 | 99 | 0.46 | 0.62 |
Rhizopogon evadens | MK529883 | KT968587 | 99 | 99 | 0.06 | 1.08 |
Rhizopogon roseolus | MK529884 | KX449430 | 100 | 98 | ˂0.01 | 0.15 |
Rhizopogon rubescens | OK042945 | LC198723 | 99 | 100 | 0.21 | 0.31 |
Russula adusta | OK042946 | JQ888194 | 100 | 99 | 0.07 | 0.15 |
Russula aeruginea | OK042947 | MK028882 | 100 | 99 | 0.04 | 0.15 |
Russula decolorans | MK529886 | JX029947 | 100 | 99 | 0.88 | 4.92 |
Russula emetica | OK042948 | KX579814 | 100 | 99 | 0.04 | 0.15 |
Russula paludosa | MK529887 | JQ888199 | 100 | 99 | 1.02 | 2.46 |
Russula vesca | OK042949 | KX655856 | 100 | 99 | 0.24 | 0.15 |
Russula vinosa | MK529888 | KM517240 | 100 | 99 | 0.07 | 0.77 |
Russula sp. | OK042950 | MK537200 | 100 | 99 | 0.01 | 0.15 |
Suillus bovinus | MK529889 | KF482482 | 100 | 99 | 0.26 | 2.15 |
Suillus granulatus | OK042951 | MK402134 | 100 | 99 | 0.10 | 0.31 |
Suillus luteus | MK529890 | KR673431 | 100 | 99 | 0.36 | 2.00 |
Suillus variagatus | MK529891 | JQ888209 | 100 | 99 | 0.07 | 0.46 |
Thelephora terrestris | MK529894 | HM189965 | 100 | 99 | 3.84 | 5.38 |
Tomentella badia | MK529895 | MT908290 | 100 | 99 | 0.05 | 0.31 |
Tomentella sp. | OK042952 | MT229604 | 100 | 99 | 0.06 | 0.15 |
Tomentelopsis sp. | MK529896 | HM190011 | 99 | 99 | 0.26 | 0.62 |
Tylospora asterophora | MK529898 | KR019865 | 100 | 99 | 3.21 | 7.69 |
Xerocomus badius | MK529905 | HQ207697 | 100 | 100 | 0.46 | 1.38 |
Fungal Taxa | Forest Plough | Active Plough | Forest Mill | Without MSP | p | ||
---|---|---|---|---|---|---|---|
Ridge | Furrow | Ridge | Furrow | Strip | |||
Ascomycetes | |||||||
Acephala macrosclerotiorum | 0.09 | 0.57 | 0.12 | ||||
Cenococcum geophilum | 0.08 a | 0.79 ab | 3.73 c | 0.56 a | 1.19 b | 6.37 d | ˂0.0001 |
Helotiales sp. | 0.50 | 0.12 | 0.78 | ||||
Hyaloscypha bicolor | 1.39 a | 2.08 b | 1.85 a | 3.01 c | 2.95 c | 0.0033 | |
Hyaloscypha finlandica | 0.01 a | 0.34 a | 0.09 a | 0.14 a | 0.12 a | 0.4212 | |
Hyaloscypha variabilis | 0.42 a | 1.38 a | 0.25 a | 0.47 a | 2.19 a | 0.0867 | |
Hyaloscypha sp. | 0.90 | 0.79 | |||||
Wilcoxins mikolae | 81.48 b | 73.69 a | 73.17 a | 85.04 c | 80.18 b | 75.30 a | 0.0061 |
Wilcoxina rehmii | 0.94 | 0.86 | |||||
Wilcoxina sp. | 0.85 | ||||||
Basidiomycetes | |||||||
Amanita pantherina | 2.07 | 0.20 | |||||
Amanita spissa | 0.01 | ||||||
Boletus edulis | 0.18 | ||||||
Boletus ferrugineus | 0.05 | ||||||
Cantharellus cibarius | 1.41 | ||||||
Cortinarius bataillei | 0.01 | ||||||
Cortinarius cinnamomeus | 0.01 | 1.65 | |||||
Cortinarius croceus | 0.06 | 0.41 | |||||
Inocybe lacera | 1.72 c | 0.17 a | 0.64 b | 0.05 a | 0.55 b | 0.0178 | |
Inocybe umbrina | 0.29 | ||||||
Laccaria proxima | 0.98 | ||||||
Lactarius rufus | 0.45 | ||||||
Paxillus involutus | 0.17 | 0.21 | |||||
Piloderma olivaceum | 0.03 | ||||||
Piloderma sphaerosporum | 1.26 | 0.08 | 0.39 | ||||
Rhizopogon evadens | 0.20 | ||||||
Rhizopogon roseolus | 0.02 | ||||||
Rhizopogon rubescens | 1.15 | ||||||
Russula adusta | 0.25 | ||||||
Russula aeruginea | 0.16 | ||||||
Russula decolorans | 0.45 a | 0.10 a | 1.54 b | 0.03 a | 0.32 a | 3.39 c | 0.0002 |
Russula emetica | 0.45 | ||||||
Russula paludosa | 0.76 a | 0.26 a | 1.17 a | 1.56 a | 0.76 a | 0.2341 | |
Russula vesca | 0.88 | ||||||
Russula vinosa | 0.23 | 0.02 | 0.11 | ||||
Russula sp. | 0.05 | ||||||
Suillus bovinus | 0.01 a | 0.34 a | 0.04 a | 0.31 a | 0.50 a | 0.38 a | 0.3388 |
Suillus granulatus | 0.32 | ||||||
Suillus luteus | 0.13 a | 0.16 a | 1.31 b | 0.35 a | 0.04 a | 0.0343 | |
Suillus variagatus | 0.52 | ||||||
Thelephora terrestris | 1.74 ab | 0.95 a | 4.62 c | 0.32 a | 2.32 b | 2.58 b | ˂0.0001 |
Tomentella badia | 0.05 | 0.28 | |||||
Tomentella sp. | 0.34 | ||||||
Tomentelopsis sp. | 0.82 | 0.40 | |||||
Tylospora asterophora | 0.42 a | 9.38 d | 2.17 b | 3.36 c | 1.77 b | 0.45 a | ˂0.0001 |
Xerocomus badius | 0.44 | 0.31 | 1.30 |
Diversity Parameter | Forest Plough | Active Plough | Forest Mill Strip | Without MSP | p | ||
---|---|---|---|---|---|---|---|
Ridge | Furrow | Ridge | Furrow | ||||
Richness per microsite (count) | 16 | 23 | 17 | 16 | 23 | 23 | - |
Richness per seedling (mean) | 1.4 a | 1.7 a | 1.7 a | 1.6 a | 1.9 a | 2.0 a | 0.5647 |
Shannon–Wiener H’ (mean) | 0.55 a | 1.16 c | 0.93 b | 0.67 a | 1.01 b | 1.38 d | 0.0021 |
Simpson 1-D (mean) | 0.19 a | 0.43 c | 0.39 b | 0.25 a | 0.35 b | 0.52 c | <0.0001 |
Evenness e^H/S (mean) | 0.11 a | 0.18 b | 0.15 b | 0.12 a | 0.12 a | 0.17 b | 0.0188 |
Jackknife 1 (mean) | 22.9 a | 29.0 b | 26.9 a | 19.0 a | 27.0 b | 32.0 b | <0.0001 |
s | f1 | r1 | f2 | r2 | |
---|---|---|---|---|---|
C | 0.8952 | 0.3556 | 0.1016 | 0.4160 | 0.0004 |
s | 0.5819 | 0.2455 | 0.5471 | 0.0231 | |
f1 | 0.4563 | 0.2099 | 0.0040 | ||
r1 | 0.0690 | 0.0016 | |||
f2 | 0.0132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bzdyk, R.M.; Sikora, K.; Studnicki, M.; Aleksandrowicz-Trzcińska, M. Communities of Mycorrhizal Fungi among Seedlings of Scots Pine (Pinus sylvestris L.) Growing on a Clearcut in Microsites Generated by Different Site-Preparation Methods. Forests 2022, 13, 353. https://doi.org/10.3390/f13020353
Bzdyk RM, Sikora K, Studnicki M, Aleksandrowicz-Trzcińska M. Communities of Mycorrhizal Fungi among Seedlings of Scots Pine (Pinus sylvestris L.) Growing on a Clearcut in Microsites Generated by Different Site-Preparation Methods. Forests. 2022; 13(2):353. https://doi.org/10.3390/f13020353
Chicago/Turabian StyleBzdyk, Roman Mariusz, Katarzyna Sikora, Marcin Studnicki, and Marta Aleksandrowicz-Trzcińska. 2022. "Communities of Mycorrhizal Fungi among Seedlings of Scots Pine (Pinus sylvestris L.) Growing on a Clearcut in Microsites Generated by Different Site-Preparation Methods" Forests 13, no. 2: 353. https://doi.org/10.3390/f13020353
APA StyleBzdyk, R. M., Sikora, K., Studnicki, M., & Aleksandrowicz-Trzcińska, M. (2022). Communities of Mycorrhizal Fungi among Seedlings of Scots Pine (Pinus sylvestris L.) Growing on a Clearcut in Microsites Generated by Different Site-Preparation Methods. Forests, 13(2), 353. https://doi.org/10.3390/f13020353