Unveiling Falling Urban Trees before and during Typhoon Higos (2020): Empirical Case Study of Potential Structural Failure Using Tilt Sensor
Abstract
:1. Introduction
1.1. Ecosystem Services Provided by Amenity Trees
1.2. Consequences of Tree Failure in Developed Landscapes
1.3. Review of Tree Failures during Windstorms
1.4. Objectives
2. Methods
2.1. Study Area
2.2. Typhoon Higos
2.3. Tailor-Made Smart Sensors
2.4. Sampling Procedure
2.5. Statistical Analysis
3. Results and Discussion
3.1. Tilt Variation before and during Typhoon Higos for Fallen Trees
3.2. Wind Simulation of Fallen Trees in the Built Environment
3.3. Analyses of Tree Tilt Pattern
3.3.1. Overall Change in Tilt Angle before and after Typhoon
3.3.2. ANCOVA Results of between Attributes Effect to Tree Tilt Angle
3.3.3. Tree Tilt Comparison between Species
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and Valuing Ecosystem Services for Urban Planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Salbitano, F.; Borelli, S.; Conigliaro, M.; Chen, Y. Guidelines on Urban and Peri-Urban Forestry. FAO Forestry Paper No. 178; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Tyrväinen, L.; Pauleit, S.; Seeland, K.; de Vries, S. Benefits and Uses of Urban Forests and Trees. In Urban Forests and Trees; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 81–114. [Google Scholar]
- Dunster, J.A.; Smiley, E.T.; Matheny, N.; Lilly, S. Tree Risk Assessment Manual, 2nd ed.; International Society of Arboriculture: Champaign, IL, USA, 2017. [Google Scholar]
- Ellison, M.J. Quantified Tree Risk Assessment Used in the Management of Amenity Trees. J. Arboric. 2005, 31, 57–65. [Google Scholar] [CrossRef]
- Koeser, A.K.; Thomas Smiley, E.; Hauer, R.J.; Kane, B.; Klein, R.W.; Landry, S.M.; Sherwood, M. Can Professionals Gauge Likelihood of Failure?—Insights from Tropical Storm Matthew. Urban For. Urban Green. 2020, 52, 126701. [Google Scholar] [CrossRef]
- Marszal, E.M. Tolerable Risk Guidelines. ISA Trans. 2001, 40, 391–399. [Google Scholar] [CrossRef]
- Moore, J.R. Differences in Maximum Resistive Bending Moments of Pinus Radiata Trees Grown on a Range of Soil Types. For. Ecol. Manag. 2000, 135, 63–71. [Google Scholar] [CrossRef]
- Dupuy, L.; Fourcaud, T.; Stokes, A. A Numerical Investigation into Factors Affecting the Anchorage of Roots in Tension. Eur. J. Soil Sci. 2005, 56, 319–327. [Google Scholar] [CrossRef]
- Kim, Y.; Rahardjo, H.; Tsen-Tieng, D.L. Stability Analysis of Laterally Loaded Trees Based on Tree-Root-Soil Interaction. Urban For. Urban Green. 2020, 49, 126639. [Google Scholar] [CrossRef]
- Detter, A.; van Wassenaer, P.; Rust, S. Stability Recovery in London Plane Trees Eight Years After Primary Anchorage Failure. Arboric. Urban For. 2019, 45, 279–288. [Google Scholar] [CrossRef]
- Boose, E.R.; Foster, D.R.; Fluet, M. Hurricane Impacts to Tropical and Temperate Forest Landscapes. Ecol. Monogr. 1994, 64, 369–400. [Google Scholar] [CrossRef]
- Yang, M.; Défossez, P.; Dupont, S. A Root-to-Foliage Tree Dynamic Model for Gusty Winds during Windstorm Conditions. Agric. For. Meteorol. 2020, 287, 107949. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Everham III, E.M.; Waide, R.B.; Lodge, D.J.; Taylor, C.M.; Brokaw, N.V.L. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life Histories. J. Ecol. 1994, 82, 911. [Google Scholar] [CrossRef]
- Government of HKSAR. LCQ8: Tree Management. Available online: https://www.info.gov.hk/gia/general/201801/17/P2018011700827.htm (accessed on 5 November 2021).
- Hong Kong Observatory. Typhoon Higos (2007) 17 to 19 August 2020. Available online: https://www.hko.gov.hk/en/informtc/higos20/report.html (accessed on 5 November 2021).
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- van Wassenaer, P.; Richardson, M. A Review of Tree Risk Assessment Using Minimally Invasive Technologies and Two Case Studies. Arboric. J. 2009, 32, 275–292. [Google Scholar] [CrossRef]
- Jackson, T.; Shenkin, A.; Moore, J.; Bunce, A.; van Emmerik, T.; Kane, B.; Burcham, D.; James, K.; Selker, J.; Calders, K.; et al. An Architectural Understanding of Natural Sway Frequencies in Trees. J. R. Soc. Interface 2019, 16, 20190116. [Google Scholar] [CrossRef] [Green Version]
- Ball, D.J.; Watt, J. Further Thoughts on the Utility of Risk Matrices. Risk Anal. 2013, 33, 2068–2078. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.A., Jr. What’s Wrong with Risk Matrices? Risk Anal. 2008, 28, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.A.; Babayev, D.; Huber, W. Some Limitations of Qualitative Risk Rating Systems. Risk Anal. 2005, 25, 651–662. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, M.F.; Ritchie, R.M. Tree Stability in Relation to Cyclic Loading. Forestry 1993, 66, 69–82. [Google Scholar] [CrossRef]
- Webb, E.L.; van de Bult, M.; Fa’aumu, S.; Webb, R.C.; Tualaulelei, A.; Carrasco, L.R. Factors Affecting Tropical Tree Damage and Survival after Catastrophic Wind Disturbance. Biotropica 2014, 46, 32–41. [Google Scholar] [CrossRef]
- Jahani, A.; Saffariha, M. Modeling of Trees Failure under Windstorm in Harvested Hyrcanian Forests Using Machine Learning Techniques. Sci. Rep. 2021, 11, 1124. [Google Scholar] [CrossRef]
- Krišāns, O.; Matisons, R.; Kitenberga, M.; Donis, J.; Rust, S.; Elferts, D.; Jansons, Ā. Wind Resistance of Eastern Baltic Silver Birch (Betula Pendula Roth.) Suggests Its Suitability for Periodically Waterlogged Sites. Forests 2020, 12, 21. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, D.; Pietzarka, U.; Roloff, A. Assessing the Adaptability of Urban Tree Species to Climate Change Impacts: A Case Study in Shanghai. Urban For. Urban Green. 2021, 62, 127186. [Google Scholar] [CrossRef]
- Ilyas, M.; Liu, Y.-Y.; Shah, S.; Ali, A.; Khan, A.H.; Zaman, F.; Yucui, Z.; Saud, S.; Adnan, M.; Ahmed, N.; et al. Adaptation of Functional Traits and Their Plasticity of Three Ornamental Trees Growing in Urban Environment. Sci. Hortic. 2021, 286, 110248. [Google Scholar] [CrossRef]
- Jim, C.Y. Improving Soil Specification for Landscape Tree Planting in the Tropics. Landsc. Urban Plan. 2021, 208, 104033. [Google Scholar] [CrossRef]
- Koeser, A.K.; Klein, R.W.; Hasing, G.; Northrop, R.J. Factors Driving Professional and Public Urban Tree Risk Perception. Urban For. Urban Green. 2015, 14, 968–974. [Google Scholar] [CrossRef]
- Serafin, A.; Wynalda, B. Trees Take the Streets: Urban Tree Growth and Hazard Potential. SUURJ Seattle Univ. Undergrad. Res. J. 2021, 5, 12. [Google Scholar]
- Lonsdale, D. Principles of Tree Hazard Assessment and Management; Stationery Office Ltd, Publications Centre: London, UK, 1999. [Google Scholar]
- Kim, Y.; Rahardjo, H.; Tsen-Tieng, D.L. Mechanical Behavior of Trees with Structural Defects under Lateral Load: A Numerical Modeling Approach. Urban For. Urban Green. 2021, 59, 126987. [Google Scholar] [CrossRef]
- Jackson, T.D.; Sethi, S.; Dellwik, E.; Angelou, N.; Bunce, A.; van Emmerik, T.; Duperat, M.; Ruel, J.-C.; Wellpott, A.; van Bloem, S.; et al. The Motion of Trees in the Wind: A Data Synthesis. Biogeosciences 2021, 18, 4059–4072. [Google Scholar] [CrossRef]
- Jim, C.Y. Tree-Habitat Relationships in Urban Hong Kong. Biol. Conserv. 1993, 66, 150. [Google Scholar] [CrossRef]
- Vojáčková, B.; Tippner, J.; Horáček, P.; Sebera, V.; Praus, L.; Mařík, R.; Brabec, M. The Effect of Stem and Root-Plate Defects on the Tree Response during Static Loading—Numerical Analysis. Urban For. Urban Green. 2021, 59, 127002. [Google Scholar] [CrossRef]
- Lee, L.S.H.; Jim, C.Y. Applying Precision Triaxial Accelerometer to Monitor Branch Sway of an Urban Tree in a Tropical Cyclone. Landsc. Urban Plan. 2018, 178, 170–182. [Google Scholar] [CrossRef]
- Göcke, L.; Rust, S.; Ruhl, F. Assessing the Anchorage and Critical Wind Speed of Urban Trees Using Root-Plate Inclination in High Winds. Arboric. Urban For. 2018, 44. [Google Scholar] [CrossRef]
- Ossenbruggen, P.J.; Peters, M.A.; Shigo, A.L. Potential Failure of a Decayed Tree Under Wind Loading. Wood Fiber Sci. 1986, 18, 168–186. [Google Scholar]
- Rust, S. Tree Inventory, Risk Assessment and Management. In Urban Tree Management: For the Sustainable Development of Green Cities; Roloff, A., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015; p. 111. [Google Scholar]
- Duryea, M.L.; Kampf, E. Wind and Trees: Lessons Learned from Hurricanes; EDIS: Gainesville, FL, USA, 2007. [Google Scholar]
- Duryea, M.L.; Kampf, E.; Littell, R.C.; Rodriguez-Pedraza, C.D. Hurricanes and the Urban Forest: II. Effects on Tropical and Subtropical Tree Species. Arboric. Urban For. 2007, 33, 98–112. [Google Scholar] [CrossRef]
- James, K.; Hallam, C.; Spencer, C. Tree Stability in Winds: Measurements of Root Plate Tilt. Biosyst. Eng. 2013, 115, 324–331. [Google Scholar] [CrossRef]
- James, K.; Hallam, C.; Spencer, C. Measuring Tilt of Tree Structural Root Zones under Static and Wind Loading. Agric. For. Meteorol. 2013, 168, 160–167. [Google Scholar] [CrossRef]
- Sellier, D.; Fourcaud, T. Crown Structure and Wood Properties: Influence on Tree Sway and Response to High Winds. Am. J. Bot. 2009, 96, 885–896. [Google Scholar] [CrossRef]
- Abbas, S.; Kwok, C.Y.T.; Hui, K.K.W.; Li, H.; Chin, D.C.W.; Ju, S.; Heo, J.; Wong, M.S. Tree Tilt Monitoring in Rural and Urban Landscapes of Hong Kong Using Smart Sensing Technology. Trees For. People 2020, 2, 100030. [Google Scholar] [CrossRef]
- Hong Kong Observatory. The Year’s Weather. 2020. Available online: https://www.hko.gov.hk/en/wxinfo/pastwx/2020/ywx2020.htm (accessed on 5 November 2021).
- Hong Kong Observatory. Tropical Cyclone Annual Publications. Available online: https://www.hko.gov.hk/en/publica/pubtc.htm (accessed on 5 November 2021).
- Terho, M. An Assessment of Decay among Urban Tilia, Betula, and Acer Trees Felled as Hazardous. Urban For. Urban Green. 2009, 8, 77–85. [Google Scholar] [CrossRef]
- Selbig, W.R.; Loheide, S.P.; Shuster, W.; Scharenbroch, B.C.; Coville, R.C.; Kruegler, J.; Avery, W.; Haefner, R.; Nowak, D. Quantifying the Stormwater Runoff Volume Reduction Benefits of Urban Street Tree Canopy. Sci. Total Environ. 2022, 806, 151296. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltola, H.M. Mechanical Stability of Trees under Static Loads. Am. J. Bot. 2006, 93, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- England, A.H. A Dynamic Analysis of Windthrow of Trees. Forestry 2000, 73, 225–238. [Google Scholar] [CrossRef]
- Fourcaud, T.; Ji, J.-N.; Zhang, Z.-Q.; Stokes, A. Understanding the Impact of Root Morphology on Overturning Mechanisms: A Modelling Approach. Ann. Bot. 2007, 101, 1267–1280. [Google Scholar] [CrossRef] [Green Version]
- van Haaften, M.; Liu, Y.; Wang, Y.; Zhang, Y.; Gardebroek, C.; Heijman, W.; Meuwissen, M. Understanding Tree Failure—A Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e0246805. [Google Scholar] [CrossRef]
- Mattheck, C.; Breloer, H. The Body Language of Trees: A Handbook for Failure Analysis; HMSO Publications Centre: London, UK, 1994. [Google Scholar]
- Moore, J.; Gardiner, B.; Sellier, D. Tree Mechanics and Wind Loading. In Plant Biomechanics; Geitmann, A., Gril, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 79–106. [Google Scholar]
- Clair, B.; Fournier, M.; Prevost, M.F.; Beauchene, J.; Bardet, S. Biomechanics of Buttressed Trees: Bending Strains and Stresses. Am. J. Bot. 2003, 90, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.-H.; He, S.-Y.; Garg, A.; Yin, Z.-Y. Field Monitoring of Suction in the Vicinity of an Urban Tree: Exploring Termite Infestation and the Shading Effects of Tree Canopy. Acta Geotech. 2020, 15, 1341–1361. [Google Scholar] [CrossRef]
- Pivato, D.; Dupont, S.; Brunet, Y. A Simple Tree Swaying Model for Forest Motion in Windstorm Conditions. Trees 2014, 28, 281–293. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Johnson, D.L.; Burns, S.F.; Small, T.W. Tree Uprooting: Review of Terminology, Process, and Environmental Implications. Can. J. For. Res. 1989, 19, 1–11. [Google Scholar] [CrossRef]
- Moore, G.M. Wind-Thrown Trees: Storms or Management? Arboric. Urban For. 2014, 40, 53–69. [Google Scholar] [CrossRef]
- Yang, Z.; Hui, K.W.; Abbas, S.; Zhu, R.; Kwok, C.Y.T.; Heo, J.; Ju, S.; Wong, M.S. A Review of Dynamic Tree Behaviors: Measurement Methods on Tree Sway, Tree Tilt, and Root–Plate Movement. Forests 2021, 12, 379. [Google Scholar] [CrossRef]
- Kalmikov, A.; Dupont, G.; Dykes, K.; Chan, C.P. Wind Power Resource Assessment in Complex Urban Environments: MIT Campus Case-Study Using CFD Analysis. In Proceedings of the AWEA 2010 WINDPOWER Conference, Dallas, TX, USA, 23–26 May 2010. [Google Scholar]
- Sigunga, D.O.; Kimura, M.; Hoshino, M.; Asanuma, S.; Onyango, J.C. Root-Fusion Characteristic of Eucalyptus Trees Block Gully Development. J. Environ. Prot. 2013, 4, 877–880. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.R. Disturbance History, Community Organization and Vegetation Dynamics of the Old-Growth Pisgah Forest, South-Western New Hampshire, U.S.A. J. Ecol. 1988, 76, 105. [Google Scholar] [CrossRef]
- Gibbs, J.N.; Greig, B.J.W. Survey of Parkland Trees after the Great Storm of October 16, 1987. Arboric. J. 1990, 14, 321–347. [Google Scholar] [CrossRef]
- Putz, F.E.; Sharitz, R.R. Hurricane Damage to Old-Growth Forest in Congaree Swamp National Monument, South Carolina, U.S.A. Can. J. For. Res. 1991, 21, 1765–1770. [Google Scholar] [CrossRef]
- Lin, H.; Huang, S.; Gu, Y.; Chen, Z.; Lu, Y.; Yin, S.; Jin, H.; Wu, W.; Xiao, Y. Risk Assessments of Trees and Urban Spaces under Attacks of Typhoons: A Survey and Statistical Study in Guangzhou, China. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 032055. [Google Scholar] [CrossRef]
- Jim, C.Y. Roadside Trees in Urban Hong Kong: Part IV Tree Growth and Environmental Condition. Arboric. J. 1997, 21, 89–106. [Google Scholar] [CrossRef]
- Jim, C.Y.; Liu, H.H.T. Storm Damage on Urban Trees in Guangzhou, China. Landsc. Urban Plan. 1997, 38, 45–59. [Google Scholar] [CrossRef]
- Chau, N.L.; Jim, C.Y.; Zhang, H. Species-Specific Holistic Assessment of Tree Structure and Defects in Urban Hong Kong. Urban For. Urban Green. 2020, 55, 126813. [Google Scholar] [CrossRef]
- Rutledge, B.T.; Cannon, J.B.; McIntyre, R.K.; Holland, A.M.; Jack, S.B. Tree, Stand, and Landscape Factors Contributing to Hurricane Damage in a Coastal Plain Forest: Post-Hurricane Assessment in a Longleaf Pine Landscape. For. Ecol. Manag. 2021, 481, 118724. [Google Scholar] [CrossRef]
- Stubbs, C.J.; Cook, D.D.; Niklas, K.J. A General Review of the Biomechanics of Root Anchorage. J. Exp. Bot. 2019, 70, 3439–3451. [Google Scholar] [CrossRef] [PubMed]
- Wonn, H.T.; O’Hara, K.L. Height: Diameter Ratios and Stability Relationships for Four Northern Rocky Mountain Tree Species. West. J. Appl. For. 2001, 16, 87–94. [Google Scholar] [CrossRef] [Green Version]
Dependent Variable | Tilt Angle Difference | ||||
---|---|---|---|---|---|
Type III Sum of Squares | df | Mean Square | F | p-Value | |
Corrected Model | 5.076 * | 11 | 0.4615 | 2.1480 | 0.0154 |
Intercept | 4.7418 | 1 | 4.7418 | 22.0709 | 0.0000 |
DBH | 0.3961 | 1 | 0.3961 | 1.8438 | 0.1749 |
Crown Spread | 0.2853 | 1 | 0.2853 | 1.3279 | 0.2495 |
Height | 0.0023 | 1 | 0.0023 | 0.0109 | 0.9170 |
Species | 4.2442 | 8 | 0.5305 | 2.4693 | 0.0120 |
Error | 181.3295 | 844 | 0.2148 | ||
Total | 297.9397 | 856 | |||
Corrected Total | 186.4059 | 855 |
Species | N | Percentage | Mean | SD | SE | IQR | 95% CI | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Senna siamea (syn. Cassia siamea) | 18 | 2.33% | 0.4598 | 0.2642 | 0.0623 | 0.3183 | 0.3284 | 0.5912 |
Michelia x alba | 21 | 2.44% | 0.4423 | 0.3637 | 0.0794 | 0.3424 | 0.2768 | 0.6079 |
Hibiscus tiliaceus | 38 | 4.42% | 0.4810 | 0.4978 | 0.0807 | 0.3616 | 0.3174 | 0.6446 |
Ficus benjamina | 199 | 23.14% | 0.4496 | 0.6801 | 0.0482 | 0.5198 | 0.3545 | 0.5447 |
Delonix regia | 83 | 9.65% | 0.3770 | 0.3160 | 0.0347 | 0.3462 | 0.3080 | 0.4460 |
Celtis sinensis | 31 | 3.72% | 0.4261 | 0.3194 | 0.0574 | 0.5648 | 0.3090 | 0.5433 |
Casuarina equisetifolia | 23 | 2.67% | 0.2354 | 0.1517 | 0.0316 | 0.2841 | 0.1698 | 0.3010 |
Bauhinia x blakeana | 36 | 4.19% | 0.3076 | 0.3591 | 0.0599 | 0.4550 | 0.1861 | 0.4291 |
Aleurites moluccana | 407 | 47.44% | 0.3014 | 0.3878 | 0.0192 | 0.4442 | 0.2636 | 0.3392 |
Total | 856 |
Variation Sources | Sum of Squares | df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Between species | 4.4870 | 8 | 0.5609 | 2.6114 | 0.0080 * |
Within species | 181.9189 | 847 | 0.2148 | ||
Total | 186.4059 | 855 |
Species 1 | Species 2 | MD | SE | p-Value | 95% CI | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Ficus benjamina | Senna siamea (syn. Cassia siamea) | −0.0102 | 0.1141 | 1.0000 | −0.3649 | 0.3445 |
Michelia x alba | 0.0073 | 0.1063 | 1.0000 | −0.3234 | 0.3380 | |
Hibiscus tiliaceus | −0.0314 | 0.0820 | 1.0000 | −0.2866 | 0.2237 | |
Delonix regia | 0.0726 | 0.0606 | 0.9569 | −0.1158 | 0.2609 | |
Celtis sinensis | 0.0235 | 0.0895 | 1.0000 | −0.2548 | 0.3018 | |
Casuarina equisetifolia | 0.2142 | 0.1021 | 0.4749 | −0.1032 | 0.5316 | |
Bauhinia x blakeana | 0.1420 | 0.0839 | 0.7518 | −0.1190 | 0.4030 | |
Aleurites moluccana | 0.1481 * | 0.0401 | 0.0072 | 0.0235 | 0.2728 | |
Aleurites moluccana | Senna siamea (syn. Cassia siamea) | −0.1584 | 0.1116 | 0.8906 | −0.5055 | 0.1887 |
Michelia x alba | −0.1409 | 0.1037 | 0.9128 | −0.4634 | 0.1816 | |
Hibiscus tiliaceus | −0.1796 | 0.0786 | 0.3525 | −0.4241 | 0.0649 | |
Ficus benjamina | −0.1481 * | 0.0401 | 0.0072 | −0.2728 | −0.0235 | |
Delonix regia | −0.0756 | 0.0558 | 0.9141 | −0.2492 | 0.0980 | |
Celtis sinensis | −0.1247 | 0.0863 | 0.8803 | −0.3932 | 0.1438 | |
Casuarina equisetifolia | 0.0660 | 0.0993 | 0.9992 | −0.2429 | 0.3749 | |
Bauhinia x blakeana | −0.0062 | 0.0806 | 1.0000 | −0.2568 | 0.2444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, K.K.W.; Wong, M.S.; Kwok, C.Y.T.; Li, H.; Abbas, S.; Nichol, J.E. Unveiling Falling Urban Trees before and during Typhoon Higos (2020): Empirical Case Study of Potential Structural Failure Using Tilt Sensor. Forests 2022, 13, 359. https://doi.org/10.3390/f13020359
Hui KKW, Wong MS, Kwok CYT, Li H, Abbas S, Nichol JE. Unveiling Falling Urban Trees before and during Typhoon Higos (2020): Empirical Case Study of Potential Structural Failure Using Tilt Sensor. Forests. 2022; 13(2):359. https://doi.org/10.3390/f13020359
Chicago/Turabian StyleHui, Karena Ka Wai, Man Sing Wong, Coco Yin Tung Kwok, Hon Li, Sawaid Abbas, and Janet E. Nichol. 2022. "Unveiling Falling Urban Trees before and during Typhoon Higos (2020): Empirical Case Study of Potential Structural Failure Using Tilt Sensor" Forests 13, no. 2: 359. https://doi.org/10.3390/f13020359
APA StyleHui, K. K. W., Wong, M. S., Kwok, C. Y. T., Li, H., Abbas, S., & Nichol, J. E. (2022). Unveiling Falling Urban Trees before and during Typhoon Higos (2020): Empirical Case Study of Potential Structural Failure Using Tilt Sensor. Forests, 13(2), 359. https://doi.org/10.3390/f13020359