Adversarial Fusion Network for Forest Fire Smoke Detection
Abstract
:1. Introduction
2. Related Work
2.1. Fire Smoke Detection
2.2. Attention Mechanism
2.3. Domain Adaptation
3. Materials and Methods
3.1. Feature Fusion Network
3.2. Adversarial Feature Adaptation Network
3.3. Model Optimization
3.4. Experimental Setting
3.4.1. Forest Fire Smoke Dataset
3.4.2. Early Wildfire Surveillance Dataset
3.4.3. Implementation Details and Evaluation Metrics
4. Results and Discussion
4.1. Main Results
4.1.1. Selection of Backbone Networks
4.1.2. AFN with Different Loss Functions
4.2. Comparison with State-of-the-Arts
4.2.1. Performance on Self-Built Smoke Datasets
4.2.2. Performance on Publicly Available Smoke Datasets
4.3. Ablation Studies
4.3.1. AFN with Different Attention Modules
4.3.2. Impact of Adversarial Feature Adaptation Network
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Cheng, J.H.; Du, X.Y.; Luo, X.B.; Zhang, L.; Cheng, B.; Wang, Y. Video smoke detection method based on change-cumulative image and fusion deep network. Sensors 2019, 19, 5060. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Song, W.; Ba, R.; Li, X.; Xia, L. A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite Data. Remote Sens. 2018, 10, 1992. [Google Scholar] [CrossRef] [Green Version]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, W.S.; Ekpanyapong, M.; Dailey, M.N.; Rinsurongkawong, S.; Malenichev, A.; Krasotkina, O. QuickBlaze: Early fire detection using a combined video processing approach. Fire Technol. 2016, 52, 1293–1317. [Google Scholar] [CrossRef]
- Li, S.; Shi, Y.S.; Wang, B.; Zhou, Z.Q.; Wang, H.L. Video smoke detection based on color transformation and MSER. Trans. Beijing Inst. Technol 2016, 36, 1072–1078. [Google Scholar]
- Yin, M.X.; Lang, C.Y.; Li, Z.; Feng, S.H.; Wang, T. Recurrent convolutional network for video-based smoke detection. Multimed. Tools. Appl. 2019, 78, 237–256. [Google Scholar] [CrossRef]
- Lin, G.H.; Zhang, Y.M.; Xu, G.; Zhang, Q.X. Smoke detection on video sequences using 3d convolutional neural networks. Fire Technol. 2019, 55, 1827–1847. [Google Scholar] [CrossRef]
- Mao, M.T.; Wang, W.P.; Dou, Z.; Li, Y. Fire recognition based on multi-channel convolutional neural network. Fire Technol. 2018, 54, 531–554. [Google Scholar] [CrossRef]
- Yin, Z.J.; Wan, B.Y.; Yuan, F.N.; Xia, X.; Shi, J.T. A deep normalization and convolutional neural network for image smoke detection. IEEE Access 2017, 5, 429–438. [Google Scholar] [CrossRef]
- Jeong, M.; Park, M.J.; Nam, J.; Ko, B.C. Light-weight student LSTM for real-time wildfire smoke detection. Sensors 2020, 20, 5508. [Google Scholar] [CrossRef]
- Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Brendel, W.; Bethge, M. Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Pundir, A.S.; Raman, B. Dual deep learning model for image based smoke detection. Fire Technol. 2019, 55, 2419–2442. [Google Scholar] [CrossRef]
- Zhang, F.; Qin, W.; Liu, Y.B.; Xiao, Z.T.; Liu, J.X.; Wang, Q.; Liu, K.H. A dual-channel convolution neural network for image smoke detection. Multimed. Tools. Appl. 2020, 79, 34587–34603. [Google Scholar] [CrossRef]
- Gu, K.; Xia, Z.F.; Qiao, J.F.; Lin, W.S. Deep dual-channel neural network for image-based smoke detection. IEEE Trans. Multimed. 2020, 22, 311–323. [Google Scholar] [CrossRef]
- Asadi, N.; Sarfi, A.M.; Hosseinzadeh, M.; Karimpour, Z.; Eftekhari, M. Towards shape biased unsupervised representation learning for domain generalization. arXiv 2019, arXiv:1909.08245. [Google Scholar]
- Xue, W.Q.; Wang, W. One-shot image classification by learning to restore prototypes. In Proceedings of the Association for the Advance of Artificial Intelligence (AAAI), New York, NY, USA, 7–12 February 2020; pp. 6558–6565. [Google Scholar]
- Liu, S.; Sun, Y.; Zhu, D.F.; Ren, G.H.; Chen, Y.; Feng, J.S.; Han, J.Z. Cross-domain human parsing via adversarial feature and label adaptation. In Proceedings of the Association for the Advance of Artificial Intelligence (AAAI), New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Luo, Y.M.; Zhao, L.; Liu, P.Z.; Huang, D.T. Fire smoke detection algorithm based on motion characteristic and convolutional neural networks. Multimed. Tools. Appl. 2018, 77, 15075–15092. [Google Scholar] [CrossRef]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 2030–2096. [Google Scholar]
- Dai, Y.M.; Gieseke, F.; Oehmcke, S.; Wu, Y.Q.; Barnard, K. Attentional feature fusion. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020. [Google Scholar]
- Prema, C.E.; Vinsley, S.S.; Suresh, S. Multi feature analysis of smoke in YUV color space for early forest fire detection. Fire Technol. 2016, 52, 1319–1342. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Li, Q.J.; Gu, Z. Early smoke detection of forest fire video using CS Adaboost algorithm. Optik 2015, 126, 2121–2124. [Google Scholar] [CrossRef]
- Li, X.L.; Song, W.G.; Lian, L.P.; Wei, X.G. Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sens. 2015, 7, 4473–4498. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcouglu, K. Recurrent models of visual attention. In Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014; pp. 2204–2212. [Google Scholar]
- Bahdanau, D.; Cho, K.H.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E.H. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.L.; Wu, B.G.; Zhu, P.F.; Li, P.H.; Hu, Q.H. ECA-net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Qin, Z.Q.; Zhang, P.Y.; Wu, F.; Li, X. FcaNet: Frequency channel attention networks. In Proceedings of the 2021 IEEE International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Huang, Z.L.; Wang, X.G.; Huang, L.C.; Huang, C.; Wei, Y.C.; Liu, W.Y. CCNet: Criss-cross attention for semantic segmentation. In Proceedings of the 2019 IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q.B. Rotate to attend: Convolutional triplet attention module. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020. [Google Scholar]
- Zhang, C.C.; Zhao, Q.J.; Wang, Y. Hybrid adversarial network for unsupervised domain adaptation. Inf. Sci. 2020, 514, 44–55. [Google Scholar] [CrossRef]
- Gretton, A.; Smola, A.; Huang, J.; Schmittfull, M.; Borgwardt, K.; Schölkopf, B. Covariate Shift and Local Learning by Distribution Matching; MIT Press: Cambridge, MA, USA, 2019; pp. 131–160. [Google Scholar]
- Sankaranarayanan, S.; Balaji, Y.; Castillo, C.D.; Chellappa, R. Generate to adapt: Aligning domains using generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8503–8512. [Google Scholar]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M. Conditional adversarial domain adaptation. Processing of the 32nd Conference on Neural Information Processing Systems (NIPS), Red HooK, NY, USA, 3–8 December 2018; pp. 1640–1650. [Google Scholar]
- Zhao, P.; Zhang, W.H.; Liu, B.; Kang, Z.; Bai, K.; Huang, K.Z.; Xu, Z.L. Domain adaptation with feature and label adversarial networks. Neurocomputing 2021, 439, 294–301. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Darrell, T.; Saenko, K. Simultaneous deep transfer across domains and tasks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4068–4076. [Google Scholar]
- Shen, J.; Qu, Y.; Zhang, W.; Yu, Y. Wasserstein distance guided representation learning for domain adaptation. In Proceedings of the Association for the Advance of Artificial Intelligence (AAAI), Vancouver, BC, Canada, 2–7 February 2018; pp. 4058–4065. [Google Scholar]
- Brochu, F. Increasing shape bias in ImageNet-trained networks using transfer learning and domain-adversarial methods. arXiv 2019, arXiv:1907.12892. [Google Scholar]
- Jia, Y.; Chen, W.G.; Yang, M.J.; Wang, L.W.; Liu, D.C.; Zhang, Q.X. Video smoke detection with domain knowledge and transfer learning from deep convolutional neural networks. Optik 2021, 240, 166947. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.P.; Liu, Y.; Qian, Z.H. Smoke-detection framework for high-definition video using fused spatial- and frequency-domain features. IEEE Access 2019, 7, 89687–89701. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.M.; Zhang, Q.X.; Lin, G.H.; Wang, J.J. Deep domain adaptation based video smoke detection using synthetic smoke images. Fire Saf. J. 2017, 93, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Laurens, V.D.M.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Gardner, J.R.; Kusner, M.J.; Li, Y.; Upchurch, P.; Weinberger, K.Q.; Hopcroft, J.E. Deep manifold traversal: Changing labels with convolutional features. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Gatys, I.; Ecker, A.; Bethge, M. A neural algorithm of artistic style. J. Vis. 2016, 16, 326. [Google Scholar] [CrossRef]
- Geirhos, R.; Temme, C.R.M.; Rauber, J.; Schutt, H.H.; Bethge, M.; Wichmann, F.A. Generalization in humans and deep neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS), Red HooK, NY, USA, 3–8 December 2019; pp. 7549–7561. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- David, S.B.; Blitzer, J.; Crammer, K.; Pereira, F. Analysis of representations for domain adaptation. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 4–7 December 2006; pp. 137–144. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.M.; Dollar, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Belingie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1510–1519. [Google Scholar]
- Available online: https://www.kaggle.com/c/painter-by-numbers/ (accessed on 16 December 2019).
- Ba, R.; Chen, C.; Yuan, J.; Song, W.G.; Lo, S. SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention. Remote Sens. 2019, 11, 1702. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://github.com/DeepQuestAI/Fire-Smoke-Dataset (accessed on 31 August 2020).
- Yuan, F.N.; Shi, J.T.; Xia, X.; Fang, Y.M.; Fang, Z.L.; Mei, T. High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Inf. Sci. 2016, 372, 225–240. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedanta, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. Int J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
Model | RGB–RGB | Gray–RGB | ||
---|---|---|---|---|
Top-1 (%) | Top-3 (%) | Top-1 (%) | Top-3 (%) | |
AlexNet | 84.78 ± 0.86 | 97.85 ± 0.44 | 77.59 ± 1.20 (−7.19) | 96.27 ± 0.62 (−1.58) |
ResNet-50 | 83.99 ± 0.42 | 96.41 ± 0.39 | 77.45 ± 0.88 (−6.54) | 90.48 ± 0.81 (−5.93) |
ResNet-101 | 83.92 ± 0.47 | 95.58 ± 0.61 | 79.00 ± 1.12 (−4.92) | 93.64 ± 0.64 (−1.94) |
DenseNet-121 | 83.05 ± 0.42 | 95.63 ± 0.39 | 75.84 ± 1.20 (−7.21) | 91.82 ± 0.59 (−3.81) |
DenseNet-169 | 84.04 ± 0.51 | 96.53 ± 0.41 | 79.45 ± 0.76 (−4.59) | 90.39 ± 0.79 (−6.14) |
Model | RGB–RGB | Gray–RGB | ||
---|---|---|---|---|
Top-1 (%) | Top-3 (%) | Top-1 (%) | Top-3 (%) | |
AlexNet | 81.45 ± 0.86 | 97.70 ± 0.34 | 73.97 ± 1.04 (−7.48) | 95.95 ± 0.53 (−1.75) |
ResNet-50 | 79.22 ± 1.27 | 96.41 ± 0.39 | 65.30 ± 1.13 (−13.92) | 91.89 ± 0.87 (−4.52) |
ResNet-101 | 78.59 ± 1.06 | 96.72 ± 0.61 | 59.52 ± 1.29 (−19.07) | 90.58 ± 0.75 (−6.14) |
DenseNet-121 | 79.85 ± 0.82 | 96.20 ± 0.53 | 53.70 ± 0.87 (−26.15) | 85.05 ± 0.69 (−11.15) |
DenseNet-169 | 79.99 ± 0.86 | 96.14 ± 0.67 | 55.59 ± 0.89 (−24.40) | 83.24 ± 1.14 (−12.90) |
Dataset | Model | AR (%) | DR (%) | FAR (%) | RR (%) | F1 |
---|---|---|---|---|---|---|
Yuan_Smoke [9] | HLTPMC [55] | 98.48 | 99.82 | 2.41 | 96.50 | 98.13 |
ZF-Net [56] | 97.18 | 94.02 | 0.72 | 98.86 | 96.38 | |
MCCNN [8] | 99.71 | 99.82 | 0.36 | 99.46 | 99.64 | |
DNCNN [9] | 97.83 | 95.29 | 0.48 | 99.25 | 97.23 | |
DCNN [15] | 99.71 | 99.46 | 0.12 | 99.82 | 99.64 | |
AFN | 99.78 | 99.64 | 0.12 | 99.82 | 99.73 | |
USTC_SmokeRS [53] | SmokeNet [53] | 92.75 | 94.68 | 7.59 | 68.99 | 79.82 |
AFN | 96.98 | 98.07 | 3.21 | 84.23 | 90.62 | |
Fire_Smoke [54] | AFN | 96.67 | 96.00 | 3.00 | 94.12 | 94.05 |
Model | Accuracy | Loss | |
---|---|---|---|
Top-1 (%) | Top-3 (%) | ||
AFN_Without | 89.58 ± 1.47 | 98.05 ± 0.71 | 0.50 ± 0.05 |
AFN_CBAM | 89.89 ± 3.13 | 98.46 ± 0.85 | 0.80 ± 0.43 |
AFN_CCNet | 90.21 ± 2.16 | 98.65 ± 0.27 | 0.47 ± 0.05 |
AFN_CTAM | 91.69 ± 1.57 | 99.25 ± 0.17 | 0.44 ± 0.04 |
AFN_MS-CAM | 91.85 ± 0.76 | 98.92 ± 0.27 | 0.44 ± 0.03 |
AFN_SENet | 90.37 ± 0.89 | 98.49 ± 0.43 | 0.68 ± 0.38 |
AFN_CAM | 90.10 ± 1.52 | 96.91 ± 1.16 | 0.97 ± 0.01 |
AFN_SAM | 91.72 ± 0.60 | 98.84 ± 0.24 | 0.46 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhang, C.; Zhu, H.; Zhang, J. Adversarial Fusion Network for Forest Fire Smoke Detection. Forests 2022, 13, 366. https://doi.org/10.3390/f13030366
Li T, Zhang C, Zhu H, Zhang J. Adversarial Fusion Network for Forest Fire Smoke Detection. Forests. 2022; 13(3):366. https://doi.org/10.3390/f13030366
Chicago/Turabian StyleLi, Tingting, Changchun Zhang, Haowei Zhu, and Junguo Zhang. 2022. "Adversarial Fusion Network for Forest Fire Smoke Detection" Forests 13, no. 3: 366. https://doi.org/10.3390/f13030366
APA StyleLi, T., Zhang, C., Zhu, H., & Zhang, J. (2022). Adversarial Fusion Network for Forest Fire Smoke Detection. Forests, 13(3), 366. https://doi.org/10.3390/f13030366