Some Properties of Wood Plastic Composites Made from Rubberwood, Recycled Plastic and Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of the WPC Samples
2.2. Water Absorption Test of the Samples
2.3. Janka Hardness Test of the Samples
2.4. Compressive Strength Test of the Samples
2.5. Micrographs by SEM
2.6. Processing of Data
3. Results and Discussion
3.1. Water Absorption of the Samples
3.2. Janka Hardness of the Samples
3.3. Compression Strength of the Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özturk, S. Effect of Fiber Loading on the Mechanical Properties of Kenaf and Fiberfrax Fiber-reinforced Phenol-Formaldehyde Composites. J. Compos. Mater. 2010, 44, 2265–2288. [Google Scholar] [CrossRef]
- Hiziroglu, S. What Is Wood Plastic Composite. Fact Sheet, FAPC 170. 2013. Available online: https://extension.okstate.edu/fact-sheets/print-publications/fapc-food-and-agricultural-products-center/what-is-wood-plastic-composite-fapc-170.pdf (accessed on 8 February 2022).
- Ashori, A.; Behzad, H.M.; Tarmian, A. Effects of chemical preservative treatments on durability of wood flour/HDPE composites. Compos. B Eng. 2013, 47, 308–313. [Google Scholar] [CrossRef]
- Taufiq, M.; Mansor, M.R.; Mustafa, Z. Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend. Compos. Struct. 2018, 189, 510–515. [Google Scholar] [CrossRef]
- Delviawan, A.; Suzuki, S.; Kojima, Y.; Kobori, H. The Influence of Filler Characteristics on the Physical and Mechanical Properties of Wood Plastic Composite(s). Rev. Agric. Sci. 2019, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ling, T.; Hung Mo, K. Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete—A review. Constr. Build. Mater. 2020, 240, 117869. [Google Scholar] [CrossRef]
- Shahani, S.; Gao, Z.; Qaisrani, M.A.; Ahmed, N.; Yaqoob, H.; Khoshnaw, F.; Sher, F. Preparation and Characterisation of Sustainable Wood Plastic Composites Extracted from Municipal Solid Waste. Polymers 2021, 13, 3670. [Google Scholar] [CrossRef]
- Qi, X.; Yan, W.; Cao, Z.; Ding, M.; Yuan, Y. Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Microorganisms 2022, 10, 39. [Google Scholar] [CrossRef]
- Koshti, R.; Mehta, L.B.; Samarth, N. Biological Recycling of Polyethylene Terephthalate: A Mini-Review. J. Polym. Environ. 2018, 26, 3520–3529. [Google Scholar] [CrossRef]
- Peng, R.; Xia, M.; Ru, J.; Huo, Y.; Yang, Y. Microbial degradation of polyurethane plastics. Sheng Wu Gong Cheng Xue Bao (Chin. J. Biotechnol.) 2018, 34, 1398–1409. [Google Scholar] [CrossRef]
- Sambhaji, P.P. Use of Waste Plastic in Concrete Mixture as Aggregate Replacement. Int. J. Adv. Eng. Res. Sci. 2016, 3, 236956. [Google Scholar] [CrossRef]
- Almeshal, I.; Tayeh, B.A.; Alyousef, R.; Alabduljabbar, H.; Mohamed, A.M. Eco-friendly concrete containing recycled plastic as partial replacement for sand. J. Mater. Res. Technol. 2020, 9, 4631–4643. [Google Scholar] [CrossRef]
- Rahman, K.; Islam, M.N.; Rahman, M.M.; Hannan, M.O.; Dungani, R.; Khalil, H.A. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): Physical and mechanical properties. SpringerPlus 2013, 2, 629. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.L.; Li, Y.L.; Shen, M.Y. Effects of Environmental Aging on the Durability of Wood-Flour Filled Recycled PET/PA6 Wood Plastic Composites. J. Polym. Environ. 2021. [Google Scholar] [CrossRef]
- Fabiyi, J.S.; McDonald, A.G. Effect of wood species on property and weathering performance of wood plastic composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1434–1440. [Google Scholar] [CrossRef]
- Hung, K.; Yeh, H.; Yang, T.; Wu, T.; Xu, J.; Wu, J. Characterization of Wood-Plastic Composites Made with Different Lignocellulosic Materials that Vary in Their Morphology, Chemical Composition and Thermal Stability. Polymers 2017, 9, 726. [Google Scholar] [CrossRef] [Green Version]
- Riyaphan, J.; Phumichai, T.; Neimsuwan, T.; Witayakran, S.; Sungsing, K.; Kaveata, R.; Phumichai, C. Variabilityin chemical and mechanical properties of Para rubber (Hevea brasiliensis) trees. Sci. Asia 2015, 41, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Verheye, W. Growth and production of rubber. In Land Use, Land Cover and Soil Sciences; Verheye, W.H., Ed.; UNESCO-EOLSS Publishers: Oxford, UK, 2010; pp. 295–300. [Google Scholar]
- Chotikhun, A.; Kittijaruwattana, J.; Salca, E.A.; Hiziroglu, S. Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Appl. Sci. 2020, 10, 6273. [Google Scholar] [CrossRef]
- Ramesh, M.; Rajeshkumar, L.; Sasikala, G.; Balaji, D.; Saravanakumar, A.; Bhuvaneswari, V.; Bhoopathi, R. A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects. Polymers 2022, 14, 589. [Google Scholar] [CrossRef]
- Díaz-Mendoza, J.M.; Valles-Rosales, D.J.; Park, Y.H.; Sabo, R.C. Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite. Polymers 2022, 14, 504. [Google Scholar] [CrossRef]
- Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene wood flour composites: Treatments and properties. Compos. Struct. 2001, 54, 207–214. [Google Scholar] [CrossRef]
- Lee, S.H.; Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos. A Appl. Sci. Manuf. 2006, 37, 80–91. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Jarusombuti, S.; Fueangvivat, V.; Bauchongkol, P. Effect of thermal-treatment of wood fibers on properties of flat-pressed wood plastic composites. Polym. Degrad. Stab. 2011, 96, 818–822. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Kwon, J.H.; Han, T.H.; Durmus, A. Effect of Wood-derived Charcoal Content on Properties of Wood Plastic Composites. Mater. Res. 2015, 18, 654–659. [Google Scholar] [CrossRef] [Green Version]
- Deka, B.K.; Maji, T.K. Effect of silica nanoflour on the properties of wood flour/polymer composite. Polym. Eng. Sci. 2012, 52, 1516–1523. [Google Scholar] [CrossRef]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/reuse of plastic waste as construction material for sustainable development: A review. Environ. Sci. Pollut. Res. 2021, 16, 1–24. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Jarusombuti, S. Flat-pressed Wood Plastic Composite as an Alternative to Conventional Wood-based Panels. J. Compos. Mater. 2011, 45, 103–112. [Google Scholar] [CrossRef]
- Ratanawilai, T.; Lekanukit, P.; Urapantamas, S. Effect of rubberwood and palm oil content on the properties of wood-polyvinyl chloride composites. J. Thermoplast. Compos. Mater. 2014, 27, 719–730. [Google Scholar] [CrossRef] [Green Version]
- Acosta, A.P.; Labidi, J.; Schulz, H.R.; Gallio, E.; Barbosa, K.T.; Beltrame, R.; Delucis, R.A.; Gatto, D.A. Thermochemical and Mechanical Properties of Pine Wood Treated by In Situ Polymerization of Methyl Methacrylate (MMA). Forests 2020, 11, 768. [Google Scholar] [CrossRef]
- Feng, L.; Xie, W. Analysis of Factors Affecting Creep of Wood–Plastic Composites. Forests 2021, 12, 1146. [Google Scholar] [CrossRef]
- Lv, X.; Hao, X.; Ou, R.; Liu, T.; Guo, C.; Wang, Q.; Yi, X.; Sun, L. Rheological Properties of Wood–Plastic Composites by 3D Numerical Simulations: Different Components. Forests 2021, 12, 417. [Google Scholar] [CrossRef]
- ASTM D 1037-12; Standard Test Methods for Evaluating Properties of Wood-Base Fiber Panel Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C109/C109-M-02; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2017.
- Karumuri, S.; Hiziroglu, S.; Kalkan, A.K. The distribution and role of nanoclay in lignocellulose–polymer blends. RSC Adv. 2017, 7, 19406–19416. [Google Scholar] [CrossRef] [Green Version]
- Copur, Y.; Guler, C.; Akyol, M.; Tascioglu, C. Some chemical properties of hazelnut husk and its suitablility for particleboard production. Build Environ. 2007, 42, 2568–2572. [Google Scholar] [CrossRef]
- Ates, S.; Kara, H.; Olgun, C.; Ozkan, O. Effect of heat treatment on some propeteis of MDF. Wood Mater. Sci. Eng. 2017, 12, 158–164. [Google Scholar] [CrossRef]
- Huuhilo, T.; Martikka, O.; Butylina, S.; Kärki, T. Mineral fillers for wood–plastic composites. Wood Mater. Sci. Eng. 2010, 5, 34–40. [Google Scholar] [CrossRef]
Sample Type | Rubberwood (%w/w) | PET (%w/w) | Silica (%w/w) |
---|---|---|---|
WPC-1 | 10 | 20 | 70 |
WPC-2 | 10 | 30 | 60 |
WPC-3 | 10 | 40 | 50 |
Analysis of Variance (Compressive Strength) | |||||
---|---|---|---|---|---|
Source | DF | Sum of squares | Mean squares | F | Pr > F |
Model | 2 | 113.740 | 56.870 | 159.948 | <0.0001 |
Error | 6 | 2.133 | 0.356 | ||
Corrected Total | 8 | 115.874 | |||
Analysis of Variance (Hardness) | |||||
Source | DF | Sum of squares | Mean squares | F | Pr > F |
Model | 2 | 11,907,613.333 | 5,953,806.667 | 7.861 | 0.007 |
Error | 12 | 9,088,480.000 | 757,373.333 | ||
Corrected Total | 14 | 20,996,093.333 | |||
Analysis of Variance (2 h WA): | |||||
Source | DF | Sum of squares | Mean squares | F | Pr > F |
Model | 2 | 11.074 | 5.537 | 705.830 | <0.0001 |
Error | 6 | 0.047 | 0.008 | ||
Corrected Total | 8 | 11.121 | |||
Analysis of Variance (24 h WA): | |||||
Source | DF | Sum of squares | Mean squares | F | Pr > F |
Model | 2 | 24.150 | 12.075 | 158.278 | <0.0001 |
Error | 6 | 0.458 | 0.076 | ||
Corrected Total | 8 | 24.607 |
Samples Type | Water Absorption (%) | |
---|---|---|
2-h Soaking | 24-h Soaking | |
WPC-1 | 2.76 (0.08) * | 4.28 (0.42) |
WPC-2 | 1.28 (0.13) | 1.68 (0.19 |
WPC-3 | 0.05 (0.02) | 0.34 (0.14) |
Sample Type | Density (g/cm3) | Hardness ** (N) | Compressive Strength ** (N/mm2) |
---|---|---|---|
WPC-1 | 1.41 (0.07) * | 2854 (292.80) | 10.08(0.51) |
WPC-2 | 1.41 (0.06) | 4492 (1152.57) | 15.55(0.31) |
WPC-3 | 1.57 (0.02) | 4922 (926.27) | 18.69(0.84) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotikhun, A.; Kittijaruwattana, J.; Arsyad, W.O.M.; Salca, E.-A.; Hadi, Y.S.; Hiziroglu, S. Some Properties of Wood Plastic Composites Made from Rubberwood, Recycled Plastic and Silica. Forests 2022, 13, 427. https://doi.org/10.3390/f13030427
Chotikhun A, Kittijaruwattana J, Arsyad WOM, Salca E-A, Hadi YS, Hiziroglu S. Some Properties of Wood Plastic Composites Made from Rubberwood, Recycled Plastic and Silica. Forests. 2022; 13(3):427. https://doi.org/10.3390/f13030427
Chicago/Turabian StyleChotikhun, Aujchariya, Jitralada Kittijaruwattana, Wa Ode Muliastuty Arsyad, Emilia-Adela Salca, Yusuf Sudo Hadi, and Salim Hiziroglu. 2022. "Some Properties of Wood Plastic Composites Made from Rubberwood, Recycled Plastic and Silica" Forests 13, no. 3: 427. https://doi.org/10.3390/f13030427
APA StyleChotikhun, A., Kittijaruwattana, J., Arsyad, W. O. M., Salca, E. -A., Hadi, Y. S., & Hiziroglu, S. (2022). Some Properties of Wood Plastic Composites Made from Rubberwood, Recycled Plastic and Silica. Forests, 13(3), 427. https://doi.org/10.3390/f13030427