Radial Stem Growth of the Clonal Shrub Alnus alnobetula at Treeline Is Constrained by Summer Temperature and Winter Desiccation and Differs in Carbon Allocation Strategy Compared to Co-Occurring Pinus cembra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Stem Sampling and Growth Ring Measurements
2.3. Climate–Growth Relationships
3. Results
4. Discussion
4.1. Age Structure and Growth Characteristics of Alnus alnobetula
4.2. Climate Forcing of Radial Stem Growth of Alnus alnobetula
4.3. Long Term Trend in Radial Stem Growth of Co-Occurring Alnus alnobetula and Pinus cembra
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiedmer, E.; Senn-Irlet, B. Biomass and primary productivity of an Alnus viridis stand—A case study from the Schächental valley, Switzerland. Bot. Helv. 2006, 116, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Boscutti, F.; Poldini, L.; Buccheri, M. Green alder communities in the Alps: Phytosociological variability and ecological features. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2013, 148, 917–934. [Google Scholar] [CrossRef]
- Bühlmann, T.; Hiltbrunner, E.; Körner, C. Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp. Bot. 2014, 124, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Anthelme, F.; Michalet, R.; Barbaro, L.; Brun, J.-J. Environmental and Spatial Influences of Shrub Cover (Alnus viridis DC.) on Vegetation Diversity at the Upper Treeline in the Inner Western Alps. Arct. Antarct. Alp. Res. 2003, 35, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.S.A.; Horning, N.; Goetz, S.J.; Loranty, M.M.; Tape, K.D. Shrub Cover on the North Slope of Alaska: A circa 2000 Baseline Map. Arct. Antarct. Alp. Res. 2011, 43, 355–363. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef] [Green Version]
- Frost, G.V.; Epstein, H.E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Chang. Biol. 2014, 20, 1264–1277. [Google Scholar] [CrossRef]
- Schröter, C. Das Pflanzenleben der Alpen: Eine Schilderung der Hochgebirgsflora; Albert Raustein: Zürich, Switzerland, 1908; p. 806. [Google Scholar]
- Richard, L. Ecologie de l’Aulne Vert (Alnus viridis Chaix): Facteurs climatiques et édaphiques. Doc. Carte. Veg. Alpes. 1968, 6, 107–158. [Google Scholar]
- Richard, L. Une interpretation eco-physiologique de la repartition de l’aune vert (Alnus viridis). Doc. Carte. Veg. Alpes. 1969, 7, 7–23. [Google Scholar]
- Caviezel, C.; Hunziker, M.; Kuhn, N.J. Green alder encroachment in the European Alps: The need for analyzing the spread of a native-invasive species across spatial data. Catena 2017, 159, 149–158. [Google Scholar] [CrossRef]
- Schwencke, J.; Carú, M. Advances in Actinorhizal Symbiosis: Host Plant- Frankia Interactions, Biology, and Applications in Arid Land Reclamation. A Review. Arid Land Res. Manag. 2001, 15, 285–327. [Google Scholar] [CrossRef]
- Dawson, J. Ecology of actinorhizal plants. In Nitrogen-Fixing Actinorhizal Symbioses; Pawlowski, K., Newton, W., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 199–234. [Google Scholar]
- Chatarpaul, L.; Chakravarty, P.; Subramaniam, P. Studies in tetrapartite symbioses. Plant Soil 1989, 118, 145–150. [Google Scholar] [CrossRef]
- Salmon, V.G.; Breen, A.L.; Kumar, J.; Lara, M.; Thornton, P.E.; Wullschleger, S.D.; Iversen, C.M. Alder Distribution and Expansion Across a Tundra Hillslope: Implications for Local N Cycling. Front. Plant Sci. 2019, 10, 1099. [Google Scholar] [CrossRef] [PubMed]
- Bühlmann, T.; Körner, C.; Hiltbrunner, E. Shrub Expansion of Alnus viridis Drives Former Montane Grassland into Nitrogen Saturation. Ecosystems 2016, 19, 968–985. [Google Scholar] [CrossRef]
- Rubli, D. Waldbauliche Untersuchungen in Grünerlenbeständen. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1974. [Google Scholar]
- Hiltbrunner, E.; Aerts, R.; Bühlmann, T.; Huss-Danell, K.; Magnusson, B.; Myrold, D.; Reed, S.; Sigurdsson, B.D.; Körner, C. Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 2014, 176, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Körner, C. Alpine Treelines. In Functional Ecology of the Global High Elevation Tree Limits; Springer: Basel, Switzerland, 2012; p. 220. [Google Scholar]
- Wieser, G.; Oberhuber, W.; Gruber, A. Effects of Climate Change at Treeline: Lessons from Space-for-Time Studies, Manipulative Experiments, and Long-Term Observational Records in the Central Austrian Alps. Forest 2019, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.S.; Ruess, R.W. Seasonal patterns of climate controls over nitrogen fixation by Alnus viridis subsp. fruticosa in a secondary successional chronosequence in interior Alaska. Ecoscience 2009, 16, 341–351. [Google Scholar] [CrossRef]
- Lantz, T.C.; Gergel, S.E.; Henry, G.H.R. Response of green alder (Alnus viridis subsp. Fruticosa) patch dynamics and plant community composition to fire and regional temperature in north-western Canada. J. Biogeogr. 2010, 37, 1597–1610. [Google Scholar]
- Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.; Rayback, S.A.; Weijers, S.; Trant, A.J.; Tape, K.D.; Naito, A.; Wipf, S.; et al. Methods for measuring arctic and alpine shrub growth: A review. Earth Sci. Rev. 2015, 140, 1–13. [Google Scholar] [CrossRef]
- Körner, C.; Jussel, U.; Schiffer, K. Transpiration, Diffusionswiderstand und Wasserpotential in verschiedenen Schichten eines Grünerlenbestandes. In Ökologische Analysen von Almflächen im Gasteiner Tal. Veröff Österr MaB-Hochgebirgsprogramm Hohe Tauern Band 2; Cernusca, A., Ed.; Universitätsverlag Wagner: Innsbruck, Austria, 1978; pp. 81–98. [Google Scholar]
- Herbst, M.; Eschenbach, C.; Kappen, L. Water use in neighbouring stands of beech (Fagus sylvatica L.) and black alder (Alnus glutinosa (L.) Gaertn.). Ann. Des. Sci. For. 1999, 56, 107–120. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Bigler, C.; Bugmann, H. Growth-dependent tree mortality models based on tree rings. Can. J. For. Res. 2003, 33, 210–221. [Google Scholar] [CrossRef]
- Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Forstwiss. Cent. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Pisetta, M.; Montecchio, L.; Longa, C.M.O.; Salvadori, C.; Zottele, F.; Maresi, G. Green alder decline in the Italian Alps. For. Ecol. Manag. 2012, 281, 75–83. [Google Scholar] [CrossRef]
- Liang, E.; Lu, X.; Ren, P.; Li, X.; Zhu, L.; Eckstein, D. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: A useful climatic proxy. Ann. Bot. 2012, 109, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, R.H.; Hallinger, M.; Ahlgrimm, S.; Friemel, J.; Kollmann, J.; Meilby, H. Growth response to climatic change over 120 years for Alnus viridis and Salix glauca in West Greenland. J. Veg. Sci. 2015, 26, 155–165. [Google Scholar] [CrossRef]
- Dearborn, K.D.; Danby, R.K. Topographic influences on ring widths of trees and shrubs across alpine treelines in southwest Yukon. Arctic. Antarct. Alp. Res. 2018, 50, 1495445. [Google Scholar] [CrossRef] [Green Version]
- Weijers, S.; Beckers, N.; Löffler, J. Recent spring warming limits near-treeline deciduous and evergreen alpine dwarf shrub growth. Ecosphere 2018, 9, 02328. [Google Scholar] [CrossRef]
- Oberhuber, W. Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol. 2004, 24, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Tranquillini, W. Physiological Ecology of the Alpine Timberline: Tree Existence in High Altitudes with Special Reference to the European Alps; Springer: Berlin/Heidelberg, Germany, 1979; Volume 31, p. 137. [Google Scholar]
- Wieser, G. Lessons from the timberline ecotone in the Central Tyrolean Alps: A review. Plant Ecol. Divers. 2012, 5, 127–139. [Google Scholar] [CrossRef]
- Tollmann, A. Geologie von Österreich Band 1. Die Zentralalpen; Deuticke: Wien, Austria, 1977; p. 766. [Google Scholar]
- Neuwinger, I. Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt. Ostalpin Din. Ges. Veg. 1970, 11, 135–150. [Google Scholar]
- FAO; ISRIC; ISSS. World Reference Base for Soil Resources; FAO: Rome, Italy, 1998; p. 109. [Google Scholar]
- Kolishchuk, V.G. Dendroclimatological study of prostrate woody plants. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1990; pp. 51–55. [Google Scholar]
- Bär, A.; Bräuning, A.; Löffler, J. Ring-Width Chronologies of the Alpine Dwarf Shrub Empetrum Hermaphroditum from the Norwegian Mountains. IAWA J. 2007, 28, 325–338. [Google Scholar] [CrossRef]
- Hallinger, M.; Manthey, M.; Wilmking, M. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol. 2010, 186, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Esper, J.; Cook, E.R.; Krusic, P.J.; Peters, K.; Schweingruber, F.H. Tests of the RCS Method for Preserving Low-Frequency Variability in Long Tree-Ring Chronologies. Tree-Ring Res. 2003, 59, 81–98. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Briffa, K.R.; Cook, E.R. Methods of response function analysis. In Methods of Dendrochronology; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer: Dordrecht, The Netherlands, 1990; pp. 165–178. [Google Scholar]
- Biondi, F.; Waikul, K. Dendroclim2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 2004, 30, 303–311. [Google Scholar] [CrossRef]
- Cook, E.R.; Holmes, R.L. Program ARSTAN User Manual; Laboratory of Tree Ring Research, University of Arizona: Tucson, AZ, USA, 1984; p. 14. [Google Scholar]
- Neuwirth, B.; Esper, J.; Schweingruber, F.H.; Winiger, M. Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 2004, 21, 69–78. [Google Scholar] [CrossRef]
- Eckstein, D.; Bauch, J. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss. Cent. 1969, 88, 230–250. [Google Scholar] [CrossRef]
- Baillie, M.G.; Pilcher, J.R. A simple crossdating program for tree-ring research. Tree Ring Bull. 1973, 38, 35–43. [Google Scholar]
- Holtmeier, F.K. Mountain Timberlines; Ecology, Patchiness and Dynamics. Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2009; Volume 36, p. 437. [Google Scholar]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und Historischer Sicht; UTB: Stuttgart, Germany, 2010; p. 1357. [Google Scholar]
- Wettstein, S. Der Einfluss abiotischer Faktoren auf die Morphologie der Grünerle. Bot. Helv. 2001, 111, 31–44. [Google Scholar]
- Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Chang. Biol. 2010, 16, 1542–1554. [Google Scholar] [CrossRef]
- Rayback, S.A.; Henry, G.H.R. Reconstruction of Summer Temperature for a Canadian High Arctic Site from Retrospective Analysis of the Dwarf Shrub, Cassiope tetragona. Arct. Antarct. Alp. Res. 2006, 38, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Buchwal, A.; Rachlewicz, G.; Fonti, P.; Cherubini, P.; Gärtner, H. Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biol. 2013, 36, 1305–1318. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Carbon limitation in trees. J. Ecol. 2003, 91, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, J.; Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 2014, 124, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guggenberger, H. Untersuchungen zum Wasserhaushalt der Alpinen Zwergstrauchheide Patscherkofel. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1980. [Google Scholar]
- Wieser, G.; Gruber, A.; Oberhuber, W. Sap flow characteristics and whole-tree water use of Pinus cembra across the treeline ecotone of the central Tyrolean Alps. Forstwiss. Cent. 2014, 133, 287–295. [Google Scholar] [CrossRef]
- Frey, W. The Influence of Snow on Growth and Survival of Planted Trees. Arct. Alp. Res. 1983, 15, 241. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bilbrough, C.; Welker, J.M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 2004, 36, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Larsen, K.S.; Grogan, P.; Jonasson, S.; Michelsen, A. Respiration and Microbial Dynamics in Two Subarctic Ecosystems during Winter and Spring Thaw: Effects of Increased Snow Depth. Arct. Antarct. Alp. Res. 2007, 39, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Neuner, G.; Kreische, B.; Kaplenig, D.; Monitzer, K.; Miller, R. Deep supercooling enabled by surface impregnation with lipophilic substances explains the survival of overwintering buds at extreme freezing. Plant Cell Environ. 2019, 42, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Taschler, D.; Beikircher, B.; Neuner, G. Frost resistance and ice nucleation in leaves of five woody timberline species measured in situ during shoot expansion. Tree Physiol. 2004, 24, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y. Auxin Biosynthesis and Its Role in Plant Development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalerao, R.; Fischer, U. Environmental and hormonal control of cambial stem cell dynamics. J. Exp. Bot. 2017, 68, 79–87. [Google Scholar] [CrossRef] [PubMed]
- OberhuberM, W.; Kofler, W.; Pfeifer, K.; Seeber, A.; Gruber, A.; Wieser, G. Long-term changes in tree-ring-climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees 2008, 22, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bräker, O.U. Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelholzern und sein Ausgleich. Mitt. Vienna Forstl. Bundesver. 1981, 142, 75–102. [Google Scholar]
- Rixen, C.; Schwoerer, C.; Wipf, S. Winter climate change at different temporal scales in Vaccinium myrtillus, an Arctic and alpine dwarf shrub. Polar Res. 2010, 29, 85–94. [Google Scholar] [CrossRef]
- Pellizzari, E.; Camarero, J.J.; Gazol, A.; Granda, E.; Shetti, R.; Wilmking, M.; Moiseev, P.; Pividori, M.; Carrer, M. Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent. Glob. Chang. Biol. 2017, 23, 3169–3180. [Google Scholar] [CrossRef] [PubMed]
- Šenfeldr, M.; Kaczka, R.; Buras, A.; Samusevich, A.; Herrmann, C.; Spyt, B.; Menzel, A.; Treml, V. Diverging growth performance of co-occurring trees (Picea abies) and shrubs (Pinus mugo) at the treeline ecotone of Central European mountain ranges. Agric. For. Meteorol. 2021, 308–309, 108608. [Google Scholar] [CrossRef]
- Mallik, A.; Bell, F.; Gong, Y. Regeneration behavior of competing plants after clear cutting: Implications for vegetation management. For. Ecol. Manag. 1997, 95, 1–10. [Google Scholar] [CrossRef]
- Cook, E.R.; Briffa, K.; Meko, D.M.; Graybill, D.A.; Funkhouser, G. The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 1995, 5, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.L.; Groenendijk, P.; Vlam, M.; Zuidema, P.A. Detecting long-term growth trends using tree rings: A critical evaluation of methods. Glob. Chang. Biol. 2015, 21, 2040–2054. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, W.; Bendler, U.; Gamper, V.; Geier, J.; Hölzl, A.; Kofler, W.; Krismer, H.; Waldboth, B.; Wieser, G. Growth Trends of Coniferous Species along Elevational Transects in the Central European Alps Indicate Decreasing Sensitivity to Climate Warming. Forest 2020, 11, 132. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Tape, K.D.; Hallinger, M.; Welker, J.M.; Ruess, R.W. Landscape Heterogeneity of Shrub Expansion in Arctic Alaska. Ecosystems 2012, 15, 711–724. [Google Scholar] [CrossRef]
- Tasser, E.; Tappeiner, U. Impact of land use changes on mountain vegetation. Appl. Veg. Sci. 2002, 5, 173–184. [Google Scholar] [CrossRef]
- Anthelme, F.; Villaret, J.C.; Brun, J.J. Shrub encroachment in the Alps gives rise to the convergence of sub-alpine communities on a regional scale. J. Veg. Sci. 2007, 18, 355–362. [Google Scholar] [CrossRef]
- Jørgensen, R.H.; Meilby, H.; Kollmann, J. Shrub expansion in SW Greenland under modest regional warming: Disentangling effects of human disturbance and grazing. Arct. Antarct. Alp. Res. 2013, 45, 515–525. [Google Scholar] [CrossRef] [Green Version]
Plot # | Elevation (M asl) | Aspect | S (°) | Sod (cm) | Stl (m) Mean ± SD | CH (m) | Age 1 (Yrs) Mean ± SD | MS 2 (%) | RW (µm) Mean ± SD | N 3 Radii/Stems |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2050 | NNW | 25 | 15 | 4.7 ± 0.6 | 3.5 | 30 ± 8 | 34 | 463 ± 90 | 11/8 |
2 | 2170 | SSE | 20 | 5 | 1.8 ± 0.3 | 1.7 | 16 ± 4 | 40 | 501 ± 149 | 6/4 |
3 | 2130 | ESE | 35 | 15–20 | 2.7 ± 0.2 | 2.2 | 21 ± 5 | 30 | 583 ± 119 | 12/7 |
4 | 2190 | E | 25 | 5–10 | 1.8 ± 0.5 | 1.6 | 14 ± 9 | 45 | 587 ± 171 | 10/6 |
5 | 2190 | SSE | 30 | 5 | 0.8 ± 0.2 | 0.6 | 9 ± 6 | 64 | 485 ± 107 | 10/5 |
6 | 2130 | W | 35 | 15 | 2.0 ± 0.5 | 1.8 | 17 ± 5 | 29 | 626 ± 212 | 10/5 |
7 | 2150 | N | 35 | 10–15 | 2.9 ± 0.5 | 2.7 | 20 ± 3 | 27 | 564 ± 157 | 11/7 |
8 | 2140 | SE | 30 | 5–10 | 1.7 ± 0.3 | 1.5 | 21 ± 7 | 32 | 339 ± 83 | 16/9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberhuber, W.; Wieser, G.; Bernich, F.; Gruber, A. Radial Stem Growth of the Clonal Shrub Alnus alnobetula at Treeline Is Constrained by Summer Temperature and Winter Desiccation and Differs in Carbon Allocation Strategy Compared to Co-Occurring Pinus cembra. Forests 2022, 13, 440. https://doi.org/10.3390/f13030440
Oberhuber W, Wieser G, Bernich F, Gruber A. Radial Stem Growth of the Clonal Shrub Alnus alnobetula at Treeline Is Constrained by Summer Temperature and Winter Desiccation and Differs in Carbon Allocation Strategy Compared to Co-Occurring Pinus cembra. Forests. 2022; 13(3):440. https://doi.org/10.3390/f13030440
Chicago/Turabian StyleOberhuber, Walter, Gerhard Wieser, Fabio Bernich, and Andreas Gruber. 2022. "Radial Stem Growth of the Clonal Shrub Alnus alnobetula at Treeline Is Constrained by Summer Temperature and Winter Desiccation and Differs in Carbon Allocation Strategy Compared to Co-Occurring Pinus cembra" Forests 13, no. 3: 440. https://doi.org/10.3390/f13030440
APA StyleOberhuber, W., Wieser, G., Bernich, F., & Gruber, A. (2022). Radial Stem Growth of the Clonal Shrub Alnus alnobetula at Treeline Is Constrained by Summer Temperature and Winter Desiccation and Differs in Carbon Allocation Strategy Compared to Co-Occurring Pinus cembra. Forests, 13(3), 440. https://doi.org/10.3390/f13030440