GIS-AHP Approach in Forest Logging Planning to Apply Sustainable Forest Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Definition of the Extraction Systems to Be Taken into Consideration
2.2. Literature Review of Criteria Selection
2.3. Data Collection and Criteria Scoring
2.4. AHP Methodology and Expert Survey
2.5. Development of the Suitability Maps for the Various Extraction Systems and Definition of the Best Alternative for Each Sub-Compartment
2.6. Statistical Analysis
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knight, R.L.; White, C. Conservation for a New Generation: Redefining Natural Resources Management; Sland Press: Washington, DC, USA, 2008; ISBN 1597269212. [Google Scholar]
- Shadbahr, J.; Bensebaa, F.; Ebadian, M. Impact of forest harvest intensity and transportation distance on biomass delivered costs within sustainable forest management-A case study in southeastern Canada. J. Environ. Manag. 2021, 284, 112073. [Google Scholar] [CrossRef] [PubMed]
- Kangas, J.; Kangas, A. Multiple criteria decision support in forest management—the approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Castonguay, M.; Zhang, C.F.; Meng, F.R.; Arp, P.A. Improving forest operations planning through high-resolution flow-channel and wet-areas mapping. For. Chron. 2008, 84, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Ferreira da Silva, E.; Fernandes da Silva, G.; Orfanó Figueiredo, E.; Ribeiro de Mendonça, A.; Junio de Oliveira Santana, C.; César Fiedler, N.; Pereira Martins Silva, J.; Otone Aguiar, M.; Silva Santos, J. Optimized forest planning: Allocation of log storage yards in the Amazonian sustainable forest management area. For. Ecol. Manag. 2020, 472, 118231. [Google Scholar] [CrossRef]
- Kazama, V.S.; Corte, A.P.D.; Robert, R.C.G.; Sanquetta, C.R.; Arce, J.E.; Oliveira-Nascimento, K.A.; DeArmond, D. Global review on forest road optimization planning: Support for sustainable forest management in Amazonia. For. Ecol. Manag. 2021, 492, 119159. [Google Scholar] [CrossRef]
- MacDicken, K.G.; Sola, P.; Hall, J.E.; Sabogal, C.; Tadoum, M.; de Wasseige, C. Global progress toward sustainable forest management. For. Ecol. Manag. 2015, 352, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Cristan, R.; Aust, W.M.; Bolding, M.C.; Barrett, S.M.; Munsell, J.F.; Schilling, E. Effectiveness of forestry best management practices in the United States: Literature review. For. Ecol. Manag. 2016, 360, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Latterini, F.; Mederski, P.S.; Tocci, D.; Venanzi, R.; Stefanoni, W.; Pari, L. Applications of GIS-Based Software to Improve the Sustainability of a Forwarding Operation in Central Italy. Sustainability 2020, 12, 5716. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Shabanian, N.; Venanzi, R.; Tavankar, F.; Picchio, R. Soil recovery assessment after timber harvesting based on the sustainable forest operation (SFO) perspective in iranian temperate forests. Sustainability 2020, 12, 2874. [Google Scholar] [CrossRef] [Green Version]
- Ellis, E.A.; Montero, S.A.; Hernández Gómez, I.U.; Romero Montero, J.A.; Ellis, P.W.; Rodríguez-Ward, D.; Blanco Reyes, P.; Putz, F.E. Reduced-impact logging practices reduce forest disturbance and carbon emissions in community managed forests on the Yucatán Peninsula, Mexico. For. Ecol. Manag. 2019, 437, 396–410. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [Green Version]
- Maleki, K.; Lafleur, B.; Leduc, A.; Bergeron, Y. Modelling the influence of different harvesting methods on forest dynamics in the boreal mixedwoods of western Quebec, Canada. For. Ecol. Manag. 2021, 479, 118545. [Google Scholar] [CrossRef]
- Blagojević, B.; Jonsson, R.; Björheden, R.; Nordström, E.; Lindroos, O. Multi-Criteria Decision Analysis (MCDA) in Forest Operations—An Introductional Review. Croat. J. For. Eng. 2019, 40, 191–2015. [Google Scholar]
- Bont, L.G.; Fraefel, M.; Frutig, F.; Holm, S.; Ginzler, C.; Fischer, C. Improving forest management by implementing best suitable timber harvesting methods. J. Environ. Manag. 2022, 302, 114099. [Google Scholar] [CrossRef]
- Marčeta, D.; Petković, V.; Ljubojević, D.; Potočnik, I. Harvesting system suitability as decision support in selection cutting forest management in northwest Bosnia and Herzegovina. Croat. J. For. Eng. 2020, 41, 251–265. [Google Scholar] [CrossRef]
- Gülci, N.; Akay, A.E.; Erdaş, O. Optimal planning of timber extraction methods using analytic hierarchy process. Eur. J. For. Res. 2020, 139, 647–654. [Google Scholar] [CrossRef]
- Pingoud, K.; Ekholm, T.; Sievänen, R.; Huuskonen, S.; Hynynen, J. Trade-offs between forest carbon stocks and harvests in a steady state—A multi-criteria analysis. J. Environ. Manag. 2018, 210, 96–103. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Proto, A.R.; Civitarese, V.; Di Marzio, N.; Latterini, F. Recent Contributions of Some Fields of the Electronics in Development of Forest Operations Technologies. Electronics 2019, 8, 1465. [Google Scholar] [CrossRef] [Green Version]
- Sari, F. Forest fire susceptibility mapping via multi-criteria decision analysis techniques for Mugla, Turkey: A comparative analysis of VIKOR and TOPSIS. For. Ecol. Manag. 2021, 480, 118644. [Google Scholar] [CrossRef]
- Görgens, E.B.; Mund, J.-P.; Cremer, T.; de Conto, T.; Krause, S.; Valbuena, R.; Rodriguez, L.C.E. Automated operational logging plan considering multi-criteria optimization. Comput. Electron. Agric. 2020, 170, 105253. [Google Scholar] [CrossRef]
- Thiffault, N.; Raymond, P.; Lussier, J.-M.; Aubin, I.; Royer-Tardif, S.; D’Amato, A.W.; Doyon, F.; Lafleur, B.; Perron, M.; Bousquet, J. Adaptive Silviculture for Climate Change: From Concepts to Reality Report on a symposium held at Carrefour Forêts 2019. For. Chron. 2021, 97, 13–27. [Google Scholar] [CrossRef]
- Pykäläinen, J. Interactive Use of Multi-Criteria Decision Analysis in Forest Planning. Ph.D. Thesis, University of Joensuu (Finland), Faculty of Forestry, Joensuu, Finland, 2000. [Google Scholar]
- Picchio, R.; Spina, R.; Maesano, M.; Carbone, F.; Lo Monaco, A.; Marchi, E. Stumpage value in the short wood system for the conversion into high forest of a oak coppice. For. Stud. China 2011, 13, 252–262. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Lv, Q.; Xiang, C.; Xia, X.; Liu, J. Susceptibility assessment of soil erosion in overlaying diluvial fan of shallow underground pipelines. Bull. Eng. Geol. Environ. 2021, 80, 2573–2585. [Google Scholar] [CrossRef]
- Cortez-Núñez, J.A.; Gutiérrez-Castillo, M.E.; Mena-Cervantes, V.Y.; Terán-Cuevas, Á.R.; Tovar-Gálvez, L.R.; Velasco, J. A GIS Approach Land Suitability and Availability Analysis of Jatropha Curcas L. Growth in Mexico as a Potential Source for Biodiesel Production. Energies 2020, 13, 5888. [Google Scholar] [CrossRef]
- Khan, S.; Mohiuddin, K. Evaluating the parameters of ArcGIS and QGIS for GIS Applications. Int. J. Adv. Res. Sci. Eng. 2018, 7, 582–594. [Google Scholar]
- Picchio, R.; Latterini, F.; Mederski, P.S.; Venanzi, R.; Karaszewski, Z.; Bembenek, M.; Croce, M. Comparing Accuracy of Three Methods Based on the GIS Environment for Determining Winching Areas. Electronics 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Pignatti, G.; Marchi, E.; Latterini, F.; Benanchi, M.; Foderi, C.; Venanzi, R.; Verani, S. The Application of Two Approaches Using GIS Technology Implementation in Forest Road Network Planning in an Italian Mountain Setting. Forests 2018, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Labelle, E.; Breinig, L.; Sycheva, E. Exploring the Use of Harvesters in Large-Diameter Hardwood-Dominated Stands. Forests 2018, 9, 424. [Google Scholar] [CrossRef] [Green Version]
- Borz, S.A.; Marcu, M.V.; Cataldo, M.F. Evaluation of an HSM 208F 14tone HVT-R2 Forwarder Prototype under Conditions of Steep-Terrain Low-Access Forests. Croat. J. For. Eng. 2021, 42, 185–200. [Google Scholar] [CrossRef]
- Stoilov, S.; Proto, A.R.; Angelov, G.; Papandrea, S.F.; Borz, S.A. Evaluation of Salvage Logging Productivity and Costs in the Sensitive Forests of Bulgaria. Forests 2021, 12, 309. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R. General productivity predicting model for skidder working in eucalypt plantations. Eur. J. For. Eng. 2021, 6, 1–6. [Google Scholar] [CrossRef]
- Søvde, N.E.; Astrup, R.; Talbot, B. An inverse shortest path approach to find forwarder productivity functions. Comput. Electron. Agric. 2019, 161, 53–61. [Google Scholar] [CrossRef]
- Tavankar, F.; Picchio, R.; Nikooy, M.; Jourgholami, M.; Naghdi, R.; Latterini, F.; Venanzi, R. Soil natural recovery process and Fagus orientalis lipsky seedling growth after timber extraction by wheeled skidder. Land 2021, 10, 113. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A. Effects of skidder passes and slope on soil disturbance in two soil water contents. Croat. J. For. Eng. 2014, 35, 73–80. [Google Scholar]
- Enache, A.; Pentek, T.; Ciobanu, V.D.; Stampfer, K. GIS based methods for computing the mean extraction distance and its correction factors in Romanian mountain forests. Sumar. List 2015, 139, 35–46. [Google Scholar]
- Strandgard, M.; Wiedemann, J.; Mitchell, R. Comparison of Productivity, Cost and Chip Quality of Four Balanced Harvest Systems Operating in a Eucalyptus globulus Plantation in Western Australia. Croat. J. For. Eng. 2019, 40, 39–48. [Google Scholar]
- Erber, G.; Haberl, A.; Pentek, T.; Stampfer, K. Impact of operational parameters on the productivity of whole tree cable yarding—A statistical analysis based on operation data. Austrian J. For. Sci. 2017, 134, 1–18. [Google Scholar]
- Gagliardi, K.; Ackerman, S.; Ackerman, P. Multi-product forwarder-based timber extraction: Time consumption and productivity analysis of two forwarder models over multiple products and extraction distances. Croat. J. For. Eng. 2020, 41, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Sealey, L.L.; Van Rees, K.C.J. Influence of skidder traffic on soil bulk density, aspen regeneration, and vegetation indices following winter harvesting in the Duck Mountain Provincial Park, SK. For. Ecol. Manag. 2019, 437, 59–69. [Google Scholar] [CrossRef]
- Mariotti, B.; Hoshika, Y.; Cambi, M.; Marra, E.; Feng, Z.; Paoletti, E.; Marchi, E. Vehicle-induced compaction of forest soil affects plant morphological and physiological attributes: A meta-analysis. For. Ecol. Manag. 2020, 462, 118004. [Google Scholar] [CrossRef]
- Sampietro, J.A.; de Vargas, D.A.; Souza, F.L.; Nicoletti, M.F.; Bonazza, M.; Topanotti, L.R. Comparison of Forwarder Productivity and Optimal Road Density in Thinning and Clearcutting of Pine Plantation in Southern Brazil. Croat. J. For. Eng. 2022, 43, 65–77. [Google Scholar] [CrossRef]
- Heinimann, H.R. Forest road network and transportation engineering—State and perspectives. Croat. J. For. Eng. 2017, 38, 155–173. [Google Scholar]
- Ghaffarian, M.R.; Stampfer, K.; Sessions, J. Comparison of three methods to determine optimal road spacing for forwarder-type logging operations. J. For. Sci. 2009, 55, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Nikooy, M.; Latterini, F.; Venanzi, R.; Bianchini, L.; Picchio, R. The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions. Sustainability 2021, 13, 4863. [Google Scholar] [CrossRef]
- Tavankar, F.; Picchio, R.; Nikooy, M.; Jourgholami, M.; Latterini, F.; Venanzi, R. Effect of soil moisture on soil compaction during skidding operations in poplar plantation. Int. J. For. Eng. 2021, 32, 128–139. [Google Scholar] [CrossRef]
- Schweier, J.; Ludowicy, C. Comparison of A Cable-Based and a Ground-Based System in Flat and Soil-Sensitive Area: A Case Study from Southern Baden in Germany. Forests 2020, 11, 611. [Google Scholar] [CrossRef]
- Schönauer, M.; Väätäinen, K.; Prinz, R.; Lindeman, H.; Pszenny, D.; Jansen, M.; Maack, J.; Talbot, B.; Astrup, R.; Jaeger, D. Spatio-temporal prediction of soil moisture and soil strength by depth-to-water maps. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102614. [Google Scholar] [CrossRef]
- Enache, A.; Kühmaier, M.; Visser, R.; Stampfer, K. Forestry operations in the European mountains: A study of current practices and efficiency gaps. Scand. J. For. Res. 2016, 31, 412–427. [Google Scholar] [CrossRef]
- Labelle, E.R.; Hansson, L.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: A Comprehensive Review. Curr. For. Rep. 2022, in press. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P.S. Multi-tree cut-to-length harvesting of short-rotation poplar plantations. Eur. J. For. Res. 2021, 140, 345–354. [Google Scholar] [CrossRef]
- Latterini, F.; Stefanoni, W.; Suardi, A.; Alfano, V.; Bergonzoli, S.; Palmieri, N.; Pari, L. A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs. Energies 2020, 13, 3385. [Google Scholar] [CrossRef]
- Tuscany Region Geodata of Tuscany Region. 2020. Available online: http://geoblog.regione.toscana.it/-/open-geodata (accessed on 30 November 2020).
- George, K.P. Falling Weight Deflectometer for Estimating Subgrade Resilient Moduli; University of Mississippi: Oxford, MS, USA, 2003. [Google Scholar]
- Kaakkurivaara, T.; Vuorimies, N.; Kolisoja, P.; Uusitalo, J. Applicability of portable tools in assessing the bearing capacity of forest roads. Silva Fenn. 2015, 49, 1239. [Google Scholar] [CrossRef] [Green Version]
- Louis, L.T.; Kizha, A.R.; Daigneault, A.; Han, H.-S.; Weiskittel, A. Factors Affecting Operational Cost and Productivity of Ground-Based Timber Harvesting Machines: A Meta-analysis. Curr. For. Rep. 2022, 8, 38–54. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Horodnic, S.A. A risk index for multicriterial selection of a logging system with low environmental impact. Environ. Impact Assess. Rev. 2015, 51, 32–37. [Google Scholar] [CrossRef]
- Jaafari, A.; Najafi, A.; Melón, M.G. Decision-making for the selection of a best wood extraction method: An analytic network process approach. For. Policy Econ. 2015, 50, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Selim, M. EasyAHP plugin for Quantum GIS. 2015. Available online: https://plugins.qgis.org/plugins/EasyAHP/ (accessed on 5 November 2020).
- Delivand, M.K.; Cammerino, A.R.B.; Garofalo, P.; Monteleone, M. Optimal locations of bioenergy facilities, biomass spatial availability, logistics costs and GHG (greenhouse gas) emissions: A case study on electricity productions in South Italy. J. Clean. Prod. 2015, 99, 129–139. [Google Scholar] [CrossRef]
- Erber, G.; Spinelli, R. Timber extraction by cable yarding on flat and wet terrain: A survey of cable yarder manufacturer’s experience. Silva Fenn. 2020, 54, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Schweier, J.; Blagojević, B.; Venanzi, R.; Latterini, F.; Picchio, R. Sustainability Assessment of Alternative Strip Clear Cutting Operations for Wood Chip Production in Renaturalization Management of Pine Stands. Energies 2019, 12, 3306. [Google Scholar] [CrossRef] [Green Version]
- Schweier, J.; Magagnotti, N.; Labelle, E.R.; Athanassiadis, D. Sustainability Impact Assessment of Forest Operations: A Review. Curr. For. Rep. 2019, 5, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Choi, Y.; Cho, M.; Cho, K.; Oh, J.; Han, S.; Im, S. A Literature Review on Cable Extraction Practices of South Korea: 1990–2020. Forests 2021, 12, 908. [Google Scholar] [CrossRef]
- Phelps, K.; Hiesl, P.; Hagan, D.; Hotaling Hagan, A. The Harvest Operability Index (HOI): A Decision Support Tool for Mechanized Timber Harvesting in Mountainous Terrain. Forests 2021, 12, 1307. [Google Scholar] [CrossRef]
- Ghajar, I. An Economical Transportation Plan for Forest Products Using a Computer-Aided Model. J. For. Econ. 2021, 36, 289–314. [Google Scholar] [CrossRef]
- Olsson, B.A.; Hannrup, B.; Jönsson, M.; Larsolle, A.; Nordström, M.; Mörtberg, U.; Rudolphi, J.; Strömgren, M. A decision support model for individual tree stump harvesting options based on criteria for economic return and environmental protection. Scand. J. For. Res. 2017, 32, 246–259. [Google Scholar] [CrossRef]
Criterion | Acronym | Economy | Environment | Society |
---|---|---|---|---|
Slope (%) | S | ✓ | ✓ | ✓ |
Extraction Distance (m) | ED | ✓ | ✓ | ✓ |
Soil Bearing Capacity (kPa) | SBC | ✓ | ✓ | ✓ |
Extracted Timber Amount (m3 ha−1) | ETA | ✓ | ||
Road Density (m ha−1) | RD | ✓ | ✓ | ✓ |
Roughness (%) | RG | ✓ | ✓ |
Extraction System | Criteria | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope | Extraction Distance | Soil Bearing Capacity | Extracted Timber Amount | Road Density | Roughness | |||||||
Range (%) | Score | Range (m) | Score | Range (kPa) | Score | Range (m3 ha−1) | Score | Range (m ha−1) | Score | Range (%) | Score | |
Forwarder | 0–20 | 5 | 0-100 | 5 | >80 | 5 | >200 | 5 | >207 | 5 | 0–15 | 5 |
20–40 | 4 | 100–200 | 5 | 60–80 | 4 | 100–200 | 4 | 138–207 | 4 | 15–30 | 4 | |
40–60 | 1 | 200–400 | 4 | 40–60 | 2 | 80–100 | 3 | 69–138 | 3 | 30–45 | 1 | |
>60 | 0 | >400 | 1 | <40 | 0 | <80 | 1 | <69 | 1 | >45 | 0 | |
Cable Skidder | 0–20 | 5 | 0-100 | 5 | >80 | 5 | >200 | 5 | >207 | 5 | 0–15 | 5 |
20–40 | 5 | 100–200 | 1 | 60–80 | 5 | 100–200 | 5 | 138–207 | 5 | 15–30 | 5 | |
40–60 | 4 | 200–400 | 0 | 40–60 | 3 | 80–100 | 4 | 69–138 | 4 | 30–45 | 4 | |
>60 | 2 | >400 | 0 | <40 | 1 | <80 | 3 | <69 | 2 | >45 | 3 | |
Medium gravity Cable Yarder | 0–20 | 0 | 0–100 | 1 | >80 | 5 | >200 | 5 | >207 | 5 | 0–15 | 5 |
20–40 | 4 | 100–200 | 3 | 60–80 | 5 | 100–200 | 5 | 138–207 | 5 | 15–30 | 5 | |
40–60 | 5 | 200–400 | 5 | 40–60 | 5 | 80–100 | 4 | 69–138 | 4 | 30–45 | 5 | |
>60 | 5 | >400 | 5 | <40 | 3 | <80 | 1 | <69 | 3 | >45 | 4 |
Country | RTS | OS | ||
---|---|---|---|---|
Asked | Respondents | Asked | Respondents | |
Albany | 7 | 3 | 1 | 1 |
Argentina | 7 | 3 | 1 | 1 |
Australia | 8 | 4 | 2 | 2 |
Austria | 8 | 4 | 2 | 0 |
Brazil | 12 | 2 | 3 | 1 |
Canada | 12 | 4 | 6 | 4 |
Cameroon | 7 | 3 | 3 | 1 |
Chile | 6 | 2 | 2 | 0 |
China | 7 | 3 | 2 | 0 |
Congo | 8 | 4 | 4 | 0 |
Croatia | 15 | 8 | 7 | 3 |
Czech Republic | 7 | 3 | 5 | 3 |
United Kingdom | 15 | 6 | 4 | 2 |
France | 7 | 3 | 5 | 3 |
Germany | 9 | 5 | 5 | 3 |
Greece | 6 | 2 | 2 | 0 |
India | 5 | 1 | 2 | 0 |
Iran | 6 | 2 | 1 | 1 |
Italy | 29 | 17 | 15 | 10 |
Japan | 7 | 3 | 3 | 1 |
New Zealand | 9 | 5 | 4 | 2 |
Poland | 12 | 2 | 3 | 1 |
Romania | 14 | 1 | 4 | 2 |
Russia | 8 | 4 | 4 | 2 |
Slovenia | 8 | 4 | 4 | 2 |
South Africa | 7 | 3 | 4 | 2 |
Spain | 15 | 3 | 5 | 3 |
Sweden | 9 | 3 | 3 | 2 |
Switzerland | 7 | 3 | 3 | 1 |
Turkey | 8 | 2 | 3 | 1 |
Uganda | 6 | 2 | 2 | 0 |
USA | 9 | 5 | 5 | 5 |
Total | 300 | 119 | 119 | 59 |
RTS | Forwarder | ||||||||
Criteria | S | ED | SBC | ETA | RD | RG | weights | CR | |
S | 1 | 1 | 0.5 | 1 | 1 | 1 | 0.143 | 0.0001 | |
ED | - | 1 | 0.5 | 1 | 1 | 1 | 0.143 | ||
SBC | - | - | 1 | 2 | 2 | 2 | 0.286 | ||
ETA | - | - | - | 1 | 1 | 1 | 0.143 | ||
RD | - | - | - | - | 1 | 1 | 0.143 | ||
RG | - | - | - | - | - | 1 | 0.143 | ||
Cable Skidder | |||||||||
Criteria | S | ED | SBC | ETA | RD | RG | weights | CR | |
S | 1 | 0.5 | 1 | 2 | 0.5 | 1 | 0.136 | 0.002 | |
ED | - | 1 | 2 | 3 | 1 | 2 | 0.259 | ||
SBC | - | - | 1 | 2 | 0.5 | 1 | 0.136 | ||
ETA | - | - | - | 1 | 0.3333 | 0.5 | 0.075 | ||
RD | - | - | - | - | 1 | 2 | 0.259 | ||
RG | - | - | - | - | - | 1 | 0.136 | ||
Medium Gravity Cable Yarder | |||||||||
Criteria | S | ED | SBC | ETA | RD | RG | weights | CR | |
S | 1 | 1 | 3 | 0.3333 | 1 | 3 | 0.161 | 0.01 | |
ED | - | 1 | 3 | 0.3333 | 1 | 3 | 0.161 | ||
SBC | - | - | 1 | 0.2 | 0.3333 | 1 | 0.06 | ||
ETA | - | - | - | 1 | 3 | 5 | 0.399 | ||
RD | - | - | - | - | 1 | 3 | 0.161 | ||
RG | - | - | - | - | - | 1 | 0.06 | ||
OS | Forwarder | ||||||||
Criteria | S | ED | SBC | ETA | RD | RG | weights | CR | |
S | 1 | 1 | 0.5 | 1 | 2 | 2 | 0.171 | 0.003 | |
ED | - | 1 | 0.5 | 1 | 2 | 2 | 0.171 | ||
SBC | - | - | 1 | 2 | 3 | 3 | 0.31 | ||
ETA | - | - | - | 1 | 2 | 2 | 0.171 | ||
RD | - | - | - | - | 1 | 1 | 0.089 | ||
RG | - | - | - | - | - | 1 | 0.089 | ||
Cable Skidder | |||||||||
Criteria | S | ED | SBC | ETA | RD | RG | weights | CR | |
S | 1 | 0.5 | 1 | 2 | 1 | 1 | 0.155 | 0.001 | |
ED | - | 1 | 2 | 3 | 2 | 2 | 0.297 | ||
SBC | - | - | 1 | 2 | 1 | 1 | 0.155 | ||
ETA | - | - | - | 1 | 0.5 | 0.5 | 0.082 | ||
RD | - | - | - | - | 1 | 1 | 0.155 | ||
RG | - | - | - | - | - | 1 | 0.155 | ||
Medium Gravity Cable Yarder | |||||||||
Criteria | S | ED | SBC | ETA | RD | RG | weights | CR | |
S | 1 | 0.25 | 1 | 0.14 | 0.5 | 0.5 | 0.054 | 0.012 | |
ED | - | 1 | 4 | 0.3333 | 3 | 3 | 0.228 | ||
SBC | - | - | 1 | 0.14 | 0.5 | 0.5 | 0.054 | ||
ETA | - | - | - | 1 | 5 | 5 | 0.47 | ||
RD | - | - | - | - | 1 | 1 | 0.097 | ||
RG | - | - | - | - | - | 1 | 0.097 |
Paired Samples t Test, Significance Level p < 0.05 | ||||
---|---|---|---|---|
Average | Standard Deviation | t | p | |
Forwarder RTS | 8 | 1.1 | ||
Forwarder OS | 8 | 1.2 | −1.0000 | 0.322126 |
Cable skidder RTS | 9 | 1.6 | ||
Cable skidder OS | 9 | 1.6 | 1.0000 | 0.322126 |
Medium gravity cable yarder RTS | 8 | 1.5 | ||
Medium gravity cable yarder OS | 9 | 1.5 | −2.36247 | 0.022086 * |
Spearman R | p Level | |
---|---|---|
Forwarder and RD | 0.244 | 0.084 |
Forwarder and ETA | 0.570 | 0.001 |
Forwarder and RG | −0.045 | 0.751 |
Forwarder and SBC | 0.534 | 0.001 |
Forwarder and S | −0.485 | 0.001 |
Forwarder and ED | −0.300 | 0.033 |
Cable Skidder and RD | 0.832 | 0.001 |
Cable Skidder and ETA | 0.311 | 0.026 |
Cable Skidder and RG | −0.011 | 0.938 |
Cable Skidder and SBC | 0.160 | 0.262 |
Cable Skidder and S | −0.240 | 0.090 |
Cable Skidder and ED | −0.856 | 0.001 |
Cable Yarder and RD | −0.220 | 0.121 |
Cable Yarder and ETA | 0.169 | 0.236 |
Cable Yarder and RG | −0.261 | 0.064 |
Cable Yarder and SBC | −0.078 | 0.589 |
Cable Yarder and S | 0.432 | 0.002 |
Cable Yarder and ED | 0.370 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latterini, F.; Stefanoni, W.; Venanzi, R.; Tocci, D.; Picchio, R. GIS-AHP Approach in Forest Logging Planning to Apply Sustainable Forest Operations. Forests 2022, 13, 484. https://doi.org/10.3390/f13030484
Latterini F, Stefanoni W, Venanzi R, Tocci D, Picchio R. GIS-AHP Approach in Forest Logging Planning to Apply Sustainable Forest Operations. Forests. 2022; 13(3):484. https://doi.org/10.3390/f13030484
Chicago/Turabian StyleLatterini, Francesco, Walter Stefanoni, Rachele Venanzi, Damiano Tocci, and Rodolfo Picchio. 2022. "GIS-AHP Approach in Forest Logging Planning to Apply Sustainable Forest Operations" Forests 13, no. 3: 484. https://doi.org/10.3390/f13030484
APA StyleLatterini, F., Stefanoni, W., Venanzi, R., Tocci, D., & Picchio, R. (2022). GIS-AHP Approach in Forest Logging Planning to Apply Sustainable Forest Operations. Forests, 13(3), 484. https://doi.org/10.3390/f13030484