Alterations in Population Distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. Caused by Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Processing of Species Distribution Data
2.2. Collection and Processing of Climate Factor Data
2.3. Construction of Model and Evaluations of Suitable Habitat Distribution
3. Results
3.1. Accuracy Test of MaxEnt Model
3.2. Influence of Different Climatic Factors
3.3. Suitable Habitat Areas of Liriodendron under Modern Climate
3.3.1. Suitable Habitat Areas of Liriodendron chinense
3.3.2. Suitable Habitat Areas of Liriodendron tulipifera
3.4. Climatic Characteristics of Suitable Habitat Areas of Liriodendron
3.5. Changes of Suitable Habitat Area of Liriodendron under Future Scenarios
3.5.1. Suitable Habitat Area of L. chinense under Future Scenarios
3.5.2. Suitable Habitat Area of L. tulipifera under Future Conditions
3.6. Core Distributional Shifts of Liriodendron under Different Climatic Scenarios
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheffers, B.R.; De Meester, T.C.L.; Bridge, A.A.; Hoffmann, J.M. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, 6313. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Lavergne, C.; Roquet, I.; Boulangeat, B. Consequences of climate change on the tree of life in Europe. Nature 2011, 470, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [Green Version]
- Farias, A.A.; Svensson, G.L. Ecoregional Vulnerability Assessment for the Functional Richness of South American Carnivorans (Mammalia: Carnivora). J. Mamm. Evol. 2014, 21, 437–450. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bailey, R. Ecosystem Geography: From Ecoregions to Sites, 2nd ed.; Springer: New York, NY, USA, 2009; p. 251. [Google Scholar]
- García, M.; Toledo-Aceves, T. Is there potential in elevational assisted migration for the endangered Magnolia vovidesii? J. Nat. Conserv. 2020, 53, 125782. [Google Scholar] [CrossRef]
- Rodrigues, E.; Cohen, M.C.; Liu, K.-B.; Pessenda, L.C.; Yao, Q.; Ryu, J.; Rossetti, D.; de Souza, A.; Dietz, M. The effect of global warming on the establishment of mangroves in coastal Louisiana during the Holocene. Geomorphology 2021, 381, 107648. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-G.; Zhou, K.-Z.; Chen, W.-Y.; Cannon, C.H.; Raes, N.; Ferry Slik, J.W. Major declines of woody plant species ranges under climate change in Yunnan, China. Divers. Distrib. 2014, 20, 405–415. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.; Liu, T.; Yan, F. Impact of recent vegetation greening on temperature and precipitation over China. Agric. For. Meteorol. 2020, 295, 108197. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blaustein, A.R.; Bartlein, P.J. Projected climate-induced faunal change in the Western Hemisphere. Ecology 2009, 90, 588–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Lin, E. Global Greenhouse Gas Emission Mitigation Under Representative Concentration Pathways Scenarios and Challenges to China. Adv. Clim. Chang. Res. 2010, 80, 436–442. [Google Scholar]
- Ma, B.; Sun, J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. 2018, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Zhang, C.; Shi, M.; Guo, F.; Liu, J.; Li, L.; Ren, Q.; Tao, S.; Tang, M.; Ye, H.; et al. Ethanol extract of Liriodendron chinense (Hemsl.) Sarg barks attenuates hyperuricemic nephropathy by inhibiting renal fibrosis and inflammation in mice. J. Ethnopharmacol. 2020, 264, 113278. [Google Scholar] [CrossRef] [PubMed]
- Quassinti, L.; Ortolani, M.; Lupidi, F. Exploring new applications of tulip tree (Liriodendron tulipifera L.): Leaf essential oil as apoptotic agent for human glioblastoma. Environ. Sci. Pollut. Res. Int. 2019, 29, 30485–30497. [Google Scholar] [CrossRef]
- IUCN Red List of Threatened Species. Liriodendron chinense (Chinese Tulip Tree). Available online: https://www.iucnredlist.org/species/31284/2803363 (accessed on 5 March 2022).
- Qiu, H.J.; Sun, J.J.; Xu, D.; Shen, A.H. MaxEnt model-based prediction of potential distribution of Liriodendron chinense in China. J. Zhejiang A&F Univ. 2020, 37, 1–8. (In Chinese) [Google Scholar] [CrossRef]
- Zhai, X.Y.; Shen, Y.F.; Zhu, S.H.; Tu, Z.H.; Zhang, C.G.; Li, H.G. Potential Impacts of Climate Change in Future on the Geo-graphical Distributions of Relic Liriodendron chinense. J. Trop. Subtrop. Bot. 2021, 29, 151–161. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Marshall, S.J.; Overpeck, J.T.; Miller, G.H.; Hu, A.; Members, C.L.I.P. Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Sciences 2006, 311, 1751–1753. [Google Scholar] [CrossRef] [Green Version]
- Etherington, T.R. Python based GIS tools for landscape genetics: Visualising genetic relatedness and measuring landscape connectivity. Methods Ecol. Evol. 2010, 2, 52–55. [Google Scholar] [CrossRef]
- Tan, Y.F.; Zuo, X.Q. Studies on Potential Suitable Growth Areas and Protection of Camellia nitidissima Based on GIS and Maxent Model. J. Trop. Subtrop. Bot. 2018, 26, 24–32. [Google Scholar]
- Zhou, H.T.; Na, X.D.; Zang, S.Y.; Xie, R. Applications of Maximum Entropy (Maxent) Model in Species Habitat Study. Environ. Sci. Manag. 2016, 41, 149–151. [Google Scholar]
- Ma, D.X.; Zhou, Y.; Yin, X.J.; Zhou, S.Y. Study on climate suitability of 11 species of common broad-leaved trees in Yunnan based on MaxEnt model. J. Northeast. For. Univ. 2020, 40, 64–72. (In Chinese) [Google Scholar]
- Ding, W.-N.; Ree, R.H.; Spicer, R.A.; Xing, Y.-W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Sciences 2020, 369, 578–581. [Google Scholar] [CrossRef]
- Ashton, P.; Zhu, H. The tropical-subtropical evergreen forest transition in East Asia: An exploration. Plant Divers. 2020, 42, 255–280. [Google Scholar] [CrossRef] [PubMed]
- Pärtel, M.; Szava-Kovats, R.; Zobel, M. Dark diversity: Shedding light on absent species. Trends Ecol. Evol. 2011, 26, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, Y. Advance of study on Liriodendron. Yunnan Nong ye da xue due bao. J. Yunnan Agric. Univ. 2005, 20, 697–701. [Google Scholar]
- Çoban, H.O.; Örücü, Ö.K.; Arslan, E.S. MaxEnt Modeling for Predicting the Current and Future Potential Geographical Dis-tribution of Quercus libani Olivier. Sustainability 2020, 12, 2671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Qin, A.L.; Liu, B.; Guo, Q.S.; Bussmann, R.W.; Ma, F.; Jian, Z.; Xu, G.; Pei, S. Maxent modeling for predicting impacts of climate change on the potential dis-tribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017, 10, 139–146. [Google Scholar] [CrossRef]
- Ma, J.; Wei, L.; Li, J.; Li, H. The Analysis of Genes and Phytohormone Metabolic Pathways Associated with Leaf Shape De-velopment in Liriodendron chinense via De Novo Transcriptome Sequencing. Genes 2018, 9, 577. [Google Scholar] [CrossRef] [Green Version]
- Woodward, F.I.; Lomas, M.R.; Kelly, C.K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1465–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Wang, R.; He, K.S.; Shi, C.; Yang, T.; Huang, Y.; Zheng, P.; Shi, F. Throwing light on dark diversity of vascular plants in China: Predicting the distribution of dark and threatened species under global climate change. PeerJ 2019, 7, e6731. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Dick, C.W.; Yao, X.; Huang, H. Impacts of biogeographic history and marginal population genetics on species range limits: A case study of Liriodendron chinense. Sci. Rep. 2016, 6, 25632. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Ding, B.Y. Flora of Zhejiang; Zhejiang Science and Technology Publishing House: Hangzhou, China, 1993; pp. 76–77. [Google Scholar]
- Chang, L.; Jinhai, H.E.; Li, Q.I.; Wen, M. A study of the different characteristics of seasonal variations of the precipitation and large-scale circulation between East Asia and eastern North America and its possible mechanism. Acta Meteorologica Sinica 2013, 6, 1074–1088. [Google Scholar] [CrossRef]
- Kannenberg, S.; A Novick, K.; Phillips, R.P. Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species. Tree Physiol. 2017, 38, 582–590. [Google Scholar] [CrossRef]
- Elliott, K.J.; Miniat, C.F.; Pederson, N.; Laseter, S.H. Forest tree growth response to hydroclimate variability in the southern Appalachians. Glob. Chang. Biol. 2015, 21, 4627–4641. [Google Scholar] [CrossRef] [PubMed]
- Cubasch, U.; Meehl, G.; Boer, G.; Ronald, S.; Dix, M.; Noda, A. Projections of future climate change. In Climate Change: The Scientific Basis. Contribution of WG1 to the Third Assessment Report of the IPCC (TAR); University of Cambridge Press: New York, NY, USA, 2001; pp. 525–582. ISBN 978-052-180-767-8. [Google Scholar]
- Jiang, Z.H.; Zhang, X.; Wang, J. Projection of climate change in China in the 21st century by IPCC-AR4 Models. Geo Res. 2008, 27, 787–799. [Google Scholar]
- Karmalkar, A.V.; Bradley, R.S. Consequences of Global Warming of 1.5 degrees C and 2 degrees C for Regional Temperature and Precipitation Changes in the Contiguous United States. PLoS ONE 2017, 12, e0168697. [Google Scholar] [CrossRef] [Green Version]
- Mc Ewan, R.W.; Brecha, R.; Geiger, D.R.; John, G.P. Flowering phenology change and climate warming in southwestern Ohio. Plant Ecol. 2010, 212, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Ahas, R. Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int. J. Biometeorol. 1999, 42, 119–123. [Google Scholar] [CrossRef]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef] [Green Version]
- Fitter, A.H.; Fitter, R.S.R. Rapid Changes in Flowering Time in British Plants. Science 2002, 296, 1689–1691. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.M.; Zhang, X.P.; Wang, Z.S. Reproductive Ecology of Liriodendron chinense: Reproductive Allocation and Life-history Strategy. J. Northeast. For. Univ. 2004, 47, 71. [Google Scholar]
- Li, D.; Barve, N.; Brenskelle, L.; Earl, K.; Barve, V. Climate, urbanization, and species traits interactively drive flowering du-ration. Glob. Chang. Biol. 2021, 27, 892–903. [Google Scholar] [CrossRef] [PubMed]
Variable Type | Variable-Description | Contribution | |
---|---|---|---|
L. chinense | L. tulipifera | ||
Temperature | Bio1—Annual mean temperature (°C) | 0.400% | 0.300% |
Bio2—Mean diurnal range (°C) | 3.500% | 4.700% | |
Bio3—Isothermality ((Bio2 − Bio7) × 100) | 0.300% | 0.000% | |
Bio4—Temperature seasonality | 23.200% | 13.900% | |
Bio5—Max temperature of warmest month (°C) | 0.100% | 1.400% | |
Bio6—Min temperature of coldest month (°C) | 0.400% | 1.300% | |
Bio7—Temperature annual range (Bio5-Bio6) (°C) | 0.300% | 2.700% | |
Bio8—Mean temperature of wettest quarter (°C) | 0.100% | 0.200% | |
Bio9—Mean temperature of driest quarter (°C) | 0.400% | 1.100% | |
Bio10—Mean temperature of warmest quarter (°C) | 1.300% | 1.200% | |
Bio11—Mean temperature of coldest quarter (°C) | 0.600% | 0.000% | |
Precipitation | Bio12—Annual precipitation (mm) | 0.000% | 0.000% |
Bio13—Precipitation of wettest month (mm) | 11.100% | 0.100% | |
Bio14—Precipitation of driest month (mm) | 0.300% | 60.500% | |
Bio15—Precipitation seasonality (mm) (coefficient of variation) | 0.300% | 4.900% | |
Bio16—Precipitation of wettest quarter (mm) | 0.000% | 0.000% | |
Bio17—Precipitation of driest quarter (mm) | 0.000% | 7.500% | |
Bio18—Precipitation of warmest quarter (mm) | 57.600% | 0.300% | |
Bio19—Precipitation of coldest quarter (mm) | 0.100% | 0.100% |
Country | Low-Level Suitable Area (×104 km2) | Moderately Suitable Area (×104 km2) | Highly Suitable Area (×104 km2) |
---|---|---|---|
Bhutan | 0.031 | 0.000 | 0.000 |
China | 71.264 | 111.712 | 24.944 |
India | 3.694 | 0.000 | 0.000 |
Iran | 0.005 | 0.000 | 0.000 |
Japan | 9.898 | 10.160 | 0.165 |
Myanmar | 0.780 | 0.000 | 0.000 |
Nepal | 0.325 | 0.000 | 0.000 |
North Korea | 3.844 | 1.602 | 0.012 |
Pakistan | 0.325 | 0.000 | 0.000 |
South Korea | 4.703 | 4.823 | 0.003 |
Vietnam | 2.613 | 0.000 | 0.000 |
Total | 97.482 | 128.297 | 25.124 |
Country | Low-Level Suitable Area (×104 km2) | Moderately Suitable Area (104 km2) | Highly Suitable Area (×104 km2) |
---|---|---|---|
Albania | 0.024 | 0.000 | 0.000 |
Argentina | 0.123 | 0.000 | 0.000 |
Australia | 0.944 | 0.000 | 0.000 |
Austria | 0.220 | 0.014 | 0.000 |
Bolivia | 0.002 | 0.000 | 0.000 |
Bosnia and Herz. | 1.682 | 0.743 | 0.000 |
Brazil | 1.667 | 0.000 | 0.000 |
Canada | 46.547 | 15.146 | 0.033 |
China | 0.030 | 0.000 | 0.000 |
Croatia | 1.613 | 0.214 | 0.000 |
France | 0.667 | 0.000 | 0.000 |
Georgia | 1.418 | 0.097 | 0.000 |
Germany | 0.071 | 0.000 | 0.000 |
Hungary | 0.010 | 0.000 | 0.000 |
India | 0.151 | 0.000 | 0.000 |
Italy | 2.613 | 0.122 | 0.000 |
Japan | 10.722 | 2.545 | 0.009 |
Kosovo | 0.609 | 0.038 | 0.000 |
Macedonia | 0.033 | 0.000 | 0.000 |
Mexico | 0.005 | 0.000 | 0.000 |
Montenegro | 0.090 | 0.000 | 0.000 |
Romania | 0.241 | 0.000 | 0.000 |
Russia | 3.623 | 1.127 | 0.000 |
San Marino | 0.002 | 0.000 | 0.000 |
Serbia | 0.403 | 0.000 | 0.000 |
Slovakia | 0.012 | 0.000 | 0.000 |
Slovenia | 1.135 | 0.000 | 0.000 |
South Korea | 0.002 | 0.000 | 0.000 |
Spain | 0.089 | 0.000 | 0.000 |
Switzerland | 0.281 | 0.000 | 0.000 |
Turkey | 0.252 | 0.000 | 0.000 |
Ukraine | 0.467 | 0.000 | 0.000 |
United States of America | 62.946 | 147.113 | 33.450 |
Uruguay | 3.214 | 0.000 | 0.000 |
Total | 141.908 | 167.159 | 33.492 |
Period | Climate Scenarios | Low-Level Suitable Area (×104 km2) | Moderately Suitable Area (×104 km2) | Highly Suitable Area (×104 km2) |
---|---|---|---|---|
2050S | RCP2.6 | 28.679 | 264.834 | 10.035 |
RCP4.5 | 38.272 | 252.654 | 22.215 | |
RCP8.5 | 30.771 | 258.293 | 16.575 | |
2070S | RCP2.6 | 11.854 | 250.857 | 24.012 |
RCP4.5 | 16.917 | 257.083 | 17.786 | |
RCP8.5 | 8.665 | 245.230 | 29.638 |
Period | Climate Scenarios | Low-Level Suitable Area (×104 km2) | Moderately Suitable Area (×104 km2) | Highly Suitable Area (×104 km2) |
---|---|---|---|---|
2050S | RCP2.6 | 61.476 | 304.468 | 36.136 |
RCP4.5 | 45.732 | 311.689 | 28.915 | |
RCP8.5 | 58.524 | 322.683 | 17.921 | |
2070S | RCP2.6 | 30.477 | 305.658 | 34.946 |
RCP4.5 | 26.679 | 306.573 | 34.031 | |
RCP8.5 | 67.243 | 314.989 | 25.615 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Feng, J.; Hwarari, D.; Ahmad, B.; Wu, H.; Chen, J.; Yang, L. Alterations in Population Distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. Caused by Climate Change. Forests 2022, 13, 488. https://doi.org/10.3390/f13030488
Cao Y, Feng J, Hwarari D, Ahmad B, Wu H, Chen J, Yang L. Alterations in Population Distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. Caused by Climate Change. Forests. 2022; 13(3):488. https://doi.org/10.3390/f13030488
Chicago/Turabian StyleCao, Yiwei, Jiajie Feng, Delight Hwarari, Baseer Ahmad, Haozhengji Wu, Jinhui Chen, and Liming Yang. 2022. "Alterations in Population Distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. Caused by Climate Change" Forests 13, no. 3: 488. https://doi.org/10.3390/f13030488
APA StyleCao, Y., Feng, J., Hwarari, D., Ahmad, B., Wu, H., Chen, J., & Yang, L. (2022). Alterations in Population Distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. Caused by Climate Change. Forests, 13(3), 488. https://doi.org/10.3390/f13030488