Dissolved Organic Matter (DOM) in a Warm-Temperate Forested Watershed—A Possibility of Ultraviolet Absorbance as an Indicator of DOM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Watershed Instrumentation and Sampling
2.2.1. Water Analyses
2.2.2. Data Compilation
2.2.3. Statistical Analysis
3. Results
3.1. Variations in Concentrations and Fluxes of DOM and Other Constituents in the Watershed
3.2. Relationships between DOC Concentration and the Other Constituents of Water Samples
3.3. Seasonal Variation in DOC Concentration and SUVA254 Value
4. Discussion
4.1. Doc Concentration and Flux
4.2. Variation in DOC Properties among Sample Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ald | the contents of dithionite citrate bicarbonate-extractable aluminum |
Alo | the contents of acid oxalate-soluble aluminum |
ANF | Anshoji National Forest |
DIC | dissolved inorganic carbon |
DOC | dissolved organic carbon |
DOCavg | the weight-average DOC concentration |
DOM | dissolved organic matter |
EC | electrical conductivity |
Fed | the contents of dithionite citrate bicarbonate-extractable iron |
Feo | the contents of acid oxalate-soluble iron |
O leachate | O layer leachate |
Rd | bulk rain at a southwest point of the watershed |
Rr | bulk rain on a ridge |
Rv | bulk rain in a closed valley |
SF | stemflow |
So10 | soil-percolating water at depth of 10 cm |
So30 | soil-percolating water at depth of 30 cm |
So70 | soil-percolating water at depth of 70 cm |
SPa | seepage water at the SPa point |
SPb | seepage water at the SPb point |
STa | stream water at the STa point |
STb | stream water at the STb point |
STc | stream water at the STc point |
STw | stream water at a closed point of the weir |
SUVA | specific UV absorbance |
SUVA254 | the specific UV absorbance at 254 nm |
TF | throughfall |
TOC | total organic carbon |
UV | ultraviolet |
UV254 | the UV absorbance at 254 nm |
YMS | Yamashiro Experimental Forest |
References
- Deb, S.K.; Shukla, M.K. A Review of Dissolved Organic Matter Transport Processes Affecting Soil and Environmental Quality. J. Environ. Anal. Toxicol. 2011, 1, 106. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the Dynamics of Dissolved Organic Matter in Soils: A Review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Kalbitz, K.; Kaiser, K. Contribution of Dissolved Organic Matter to Carbon Storage in Forest Mineral Soils. J. Plant Nutr. Soil Sci. 2008, 171, 52–60. [Google Scholar] [CrossRef]
- Fujii, K.; Funakawa, S.; Hayakawa, C.; Kosaki, T. Contribution of Different Proton Sources to Pedogenetic Soil Acidification in Forested Ecosystems in Japan. Geoderma 2008, 144, 478–490. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Fuller, R.D.; Simone, D.M. Longitudinal Variations in Trace Metal Concentrations in a Northern Forested Ecosystem. J. Environ. Qual. 1988, 17, 101–107. [Google Scholar] [CrossRef]
- Garmo, Ø.A.; Skjelkvåle, B.L.; de Wit, H.A.; Colombo, L.; Curtis, C.; Fölster, J.; Hoffmann, A.; Hruška, J.; Høgåsen, T.; Jeffries, D.S.; et al. Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut. 2014, 225, 1880. [Google Scholar] [CrossRef] [Green Version]
- Monteith, D.T.; Stoddard, J.L.; Evans, C.D.; de Wit, H.A.; Forsius, M.; Høgåsen, T.; Wilander, A.; Skjelkvåle, B.L.; Jeffries, D.S.; Vuorenmaa, J.; et al. Dissolved Organic Carbon Trends Resulting from Changes in Atmospheric Deposition Chemistry. Nature 2007, 450, 537–540. [Google Scholar] [CrossRef]
- Garmo, Ø.A.; Kaste, Ø.; Arle, J.; Austnes, K.; de Wit, H.; Fölster, J.; Houle, D.; Hruška, J.; Indriksone, I.; Monteith, D.; et al. Trends and Patterns in Surface Water Chemistry in Europe and North America between 1990 and 2016, with Particular Focus on Changes in Land Use as a Confounding Factor for Recovery. Available online: https://hdl.handle.net/11250/2649682 (accessed on 25 January 2022).
- Singer, P.C.; Iii, J.J.B.; Palen, G.M.; Scrivner, A.E. Trihalomethane Formation in North Carolina Drinking Waters. J. AWWA 1981, 73, 392–401. [Google Scholar] [CrossRef]
- Willey, J.D.; Kieber, R.J.; Eyman, M.S.; Avery, G.B. Rainwater Dissolved Organic Carbon: Concentrations and Global Flux. Glob. Biogeochem. Cycles 2000, 14, 139–148. [Google Scholar] [CrossRef]
- Liu, C.P.; Sheu, B.H. Dissolved Organic Carbon in Precipitation, Throughfall, Stemfow, Soil Solution, and Stream Water at the Guandaushi Subtropical Forest in Taiwan. For. Ecol. Manag. 2003, 172, 315–325. [Google Scholar] [CrossRef]
- Thieme, L.; Graeber, D.; Hofmann, D.; Bischoff, S.; Schwarz, M.T.; Steffen, B.; Meyer, U.-N.; Kaupenjohann, M.; Wilcke, W.; Michalzik, B.; et al. Dissolved Organic Matter Characteristics of Deciduous and Coniferous Forests with Variable Management: Different at the Source, Aligned in the Soil. Biogeosciences 2019, 16, 1411–1432. [Google Scholar] [CrossRef] [Green Version]
- Stubbins, A.; Silva, L.M.; Dittmar, T.; Van Stan, J.T. Molecular and Optical Properties of Tree-Derived Dissolved Organic Matter in Throughfall and Stemflow from Live Oaks and Eastern Red Cedar. Front. Earth Sci. 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Michalzik, B.; Matzner, E. Dynamics of Dissolved Organic Nitrogen and Carbon in a Central European Norway Spruce Ecosystem. Eur. J. Soil Sci. 1999, 50, 579–590. [Google Scholar] [CrossRef]
- McDowell, W.H.; Likens, G.E. Origin, Composition, and Flux of Dissolved Organic Carbon in the Hubbard Brook Valley. Ecol. Monogr. 1988, 58, 177–195. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling Downwards – Dissolved Organic Matter in Soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Inamdar, S.; Finger, N.; Singh, S.; Mitchell, M.; Levia, D.; Bais, H.; Scott, D.; McHale, P. Dissolved Organic Matter (DOM) Concentration and Quality in a Forested Mid-Atlantic Watershed, USA. Biogeochemistry 2012, 108, 55–76. [Google Scholar] [CrossRef]
- Neu, V.; Ward, N.D.; Krusche, A.V.; Neill, C. Dissolved Organic and Inorganic Carbon Flow Paths in an Amazonian Transitional Forest. Front. Mar. Sci. 2016, 3, 114. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Ohte, N.; Nambu, K.; Hobara, S.; Okazaki, R.; Katsuyama, M.; Kim, S. The dynamics of DOC in the hydrological process in a forested watershed. Jpn. J. Limnol. 2002, 63, 31–45, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- American Water Works Association. 5910 UV-absorbing organic constituents. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Eds.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017; pp. 71–74. [Google Scholar]
- Dobbs, R.A.; Wise, R.H.; Dean, R.B. The Use of Ultra-Violet Absorbance for Monitoring the Total Organic Carbon Content of Water and Wastewater. Water Res. 1972, 6, 1173–1180. [Google Scholar] [CrossRef]
- Jaffrain, J.; Gérard, F.; Meyer, M.; Ranger, J. Assessing the Quality of Dissolved Organic Matter in Forest Soils Using Ultraviolet Absorption Spectrophotometry. Soil Sci. Soc. Am. J. 2007, 71, 1851–1858. [Google Scholar] [CrossRef]
- Maie, N. Monitoring of the Quality of Dissolved Organic Matter in Aquatic Ecosystems by Using the Optical Properties; The Japanese Society of Irrigation, Drainage and Rural Engineering: Tokyo, Japan, 2009; pp. 52–53. (In Japanese) [Google Scholar]
- Edwards, A.C.; Cresser, M.S. Relationships between Ultraviolet Absorbance and Total Organic Carbon in Two Upland Catchments. Water Res. 1987, 21, 49–56. [Google Scholar] [CrossRef]
- Foster, P.; Morris, A.W. The Use of Ultra-Violet Absorption Measurements for the Estimation of Organic Pollution in Inshore Sea Waters. Water Res. 1971, 5, 19–27. [Google Scholar] [CrossRef]
- Ogura, N.; Hanya, T. Ultraviolet Absorbance as an Index of the Pollution of Seawater. Water Pollut. Control Fed. 1968, 40, 464–467. [Google Scholar]
- Kaneko, S.; Inagaki, M.; Morishita, T. The rapid determination of nitrate concentration in potassium chloride extracts. Jpn. J. Soil Sci. Plant Nutr. 2009, 80, 392–395. (In Japanese) [Google Scholar]
- Ogura, N.; Hanya, T. Nature of Ultra-Violet Absorption of Sea Water. Nature 1966, 212, 758. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Chin, Y.-P.; Aiken, G.; O’Loughlin, E. Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances. Environ. Sci. Technol. 1994, 28, 1853–1858. [Google Scholar] [CrossRef]
- Kalbitz, K.; Schmerwitz, J.; Schwesig, D.; Matzner, E. Biodegradation of Soil-Derived Dissolved Organic Matter as Related to Its Properties. Geoderma 2003, 113, 273–291. [Google Scholar] [CrossRef]
- Leinemann, T.; Mikutta, R.; Kalbitz, K.; Schaarschmidt, F.; Guggenberger, G. Small Scale Variability of Vertical Water and Dissolved Organic Matter Fluxes in Sandy Cambisol Subsoils as Revealed by Segmented Suction Plates. Biogeochemistry 2016, 131, 1–15. [Google Scholar] [CrossRef]
- Inagaki, M.; Sakai, M.; Ohnuki, Y. The Effects of Organic Carbon on Acid Rain in a Temperate Forest in Japan. Water Air Soil Pollut. 1995, 85, 2345–2350. [Google Scholar] [CrossRef]
- Oyanagi, N.; Urakawa, R.; Haibara, K.; Toda, H. The dynamics of dissolved organic nitrogen and dissolved organic carbon in a small watershed of established Japanese cedar (Cryptomeria japonica) and cypress (Chamaecyparis obtusa) plantation. J. For. Environ. 2002, 44, 11–20, (In Japanese with English Summary). [Google Scholar]
- Goto, Y.; Tamai, K.; Miyama, T.; Kominami, Y. Stand structure and dynamics during a 5-year period in a broad-leaved secondary forest in southern Kyoto prefecture, central Japan. Jpn. J. Ecol. 2004, 54, 71–84. (In Japanese) [Google Scholar]
- Yamashita, N. Utilization of hardwood and rehabilitation of hardwood forests in sub-urban and mountainous forest. In How to Use Harwood to Rehailitate Hardwood Forests; Kansai Research Center, Forestry and Forest Products Research Institute: Kyoto, Japan, 2018; pp. 5–8. (In Japanese) [Google Scholar]
- Kaneko, S. A rapid determining the organic carbon concentration in the stem flow of Cryptomeria japonica. J. Jpn. For. Soc. 1995, 77, 179–180. (In Japanese) [Google Scholar]
- Cory, R.M.; Green, S.A.; Pregitzer, K.S. Dissolved Organic Matter concentration and composition in the forests and streams of Olympic National Park, WA. Biogeochemistry 2004, 67, 269–288. [Google Scholar] [CrossRef]
- Vogt, R.D.; Akkanen, J.; Andersen, D.O.; Brüggemann, R.; Chatterjee, B.; Gjessing, E.; Kukkonen, J.V.K.; Larsen, H.E.; Luster, J.; Paul, A.; et al. Key Site Variables Governing the Functional Characteristics of Dissolved Natural Organic Matter (DNOM) in Nordic Forested Catchments. Aquat. Sci. 2004, 66, 195–210. [Google Scholar] [CrossRef]
- Chiba, T. The Study of Bare Lands; Societe Publications: Tokyo, Japan, 1991; 349p. (In Japanese) [Google Scholar]
- Kamibayashi, Y. Johannis de Rijke; Soushisya: Tokyo, Japan, 1999; 350p. (In Japanese) [Google Scholar]
- Kaneko, S.; Akieda, N.; Naito, F.; Tamai, K.; Hirano, Y. Nitrogen Budget of a Rehabilitated Forest on a Degraded Granitic Hill. J. For. Res. 2007, 12, 38–44. [Google Scholar] [CrossRef]
- Goto, Y.; Kominami, Y.; Miyama, T.; Tamai, K.; Kanazawa, Y. Aboveground Biomass and Net Primary Production of a Broad-Leaved Secondary Forest in the Southern Part of Kyoto Prefecture, Central Japan. Bull. FFPRI 2003, 2, 115–147, (In Japanese with English Summary). [Google Scholar]
- Geological Survey of Japan, AIST (Ed.) Seamless digital geological map of Japan 1: 200,000 V2. 6 April 2020 Version. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology. 2020. Available online: https://gbank.gsj.jp/seamless/ (accessed on 25 January 2022).
- Kaneko, S.; Fujisaki, T.; Kanazawa, Y. Carbon and nitrogen amount of the annual litterfall in a secondary broad-leaved forest in southern part of Kyoto prefecture. Jpn. For. Soc. 2006, 57, 171–174. (In Japanese) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 25 January 2022).
- Japan Meteorological Agency. Past Weather Data/Download. 2021. Available online: https://www.jma.go.jp/jma/indexe.html (accessed on 20 November 2021).
- Spyres, G.; Nimmo, M.; Worsfold, P.J.; Achterberg, E.P.; Miller, A.E.J. Determination of dissolved organic carbon in seawater using high temperature catalytic oxidation techniques. TrAC Trends Anal. Chem. 2000, 19, 498–506. [Google Scholar] [CrossRef]
- Tsuzuki, T.; Uchino, E. Total nitrogen. In Analysis of Water, 4th ed.; Hokkaido Branch of the Japan Society for Analytical Chemistry, Ed.; Kagakudojin: Kyoto, Japan, 1996; pp. 266–269. (In Japanese) [Google Scholar]
- Kawamura, S.; Goto, K. Silicic acid. In Analysis of Water, 4th ed.; Hokkaido Branch of the Japan Society for Analytical Chemistry, Ed.; Kagakudojin: Kyoto, Japan, 1996; pp. 181–184. (In Japanese) [Google Scholar]
- Masago, H. UV/Vis spectroscopy. J. Color Sci. Assoc. Jpn. 2005, 78, 531–538. (In Japanese) [Google Scholar]
- Tamai, K.; Hattori, S. Modelling of Evaporation from a Forest Floor in a Deciduous Broad-Leaved Forest and Its Application to a Basin. J. Jpn. For. Soc. 1994, 76, 233–241, (In Japanese with English Summary). [Google Scholar]
- Kansai Research Center. Monitoring in a sugi forest in Kansai Region. In The Annual Report of Monitoring to Assess the Impact of Acid Deposition on Forest Ecosystems (FY 1995 and FY 1996); Forestry and Forest Products Research Institute: Tsukuba, Japan, 1998; pp. 62–73. (In Japanese) [Google Scholar]
- Kansai Research Center. Monitoring in a sugi forest in Kansai Region. In The Annual Report of Monitoring to Assess the Impact of Acid Deposition on Forest Ecosystems (FY 1997); Forestry and Forest Products Research Institute: Tsukuba, Japan, 1998; pp. 47–53. (In Japanese) [Google Scholar]
- Kansai Research Center. Monitoring in a sugi forest in Kansai Region. In The Annual Report of Monitoring to Assess the Impact of Acid Deposition on Forest Ecosystems (FY 1998); Forestry and Forest Products Research Institute: Tsukuba, Japan, 1998; pp. 41–48. (In Japanese) [Google Scholar]
- Fujii, K.; Uemura, M.; Hayakawa, C.; Funakawa, S.; Sukartiningsih; Kosaki, T.; Ohta, S. Fluxes of Dissolved Organic Carbon in Two Tropical Forest Ecosystems of East Kalimantan, Indonesia. Geoderma 2009, 152, 127–136. [Google Scholar] [CrossRef]
- Michalzik, B.; Kalbitz, K.; Matzner, E. Fluxes and Concentrations of Dissolved Organic Carbon and Nitrogen—A Synthesis for Temperate Forests. 34. Biogeochemistry 2001, 52, 173–205. [Google Scholar] [CrossRef]
- Likens, G.E.; Edgerton, E.S.; Galloway, J.N. The Composition and Deposition of Organic Carbon in Precipitation. Tellus B Chem. Phys. Meteorol. 1983, 35, 16–24. [Google Scholar] [CrossRef]
- Levia, D.F.; Van Stan, J.T., II; Inamdar, S.P.; Jarvis, M.T.; Mitchell, M.J.; Mage, S.M.; Scheick, C.E.; Mchale, P.J. Stemflow and Dissolved Organic Carbon Cycling: Temporal Variability in Concentration, Flux, and UV-Vis Spectral Metrics in a Temperate Broadleaved Deciduous Forest in the Eastern United States. Can. J. For. Res. 2012, 42, 207–216. [Google Scholar] [CrossRef]
- Kawasaki, M.; Ohte, N.; Katsuyama, M. Biogeochemical and Hydrological Controls on Carbon Export from a Forested Catchment in Central Japan. Ecol. Res. 2005, 20, 347–358. [Google Scholar] [CrossRef]
- Asakawa, D.; Mochizuki, H.; Yanagi, Y.; Suzuki, T.; Nagao, S.; Fujitake, N. Changes in Elemental Composition, Molecular Weight and 1H NMR Spectra of the Water-Extractable Hydrophobic Acid Fraction in Cambisol with Season and Soil Depth. Soil Sci. Plant Nutr. 2006, 52, 361–370. [Google Scholar] [CrossRef]
- Imaya, A.; Inagaki, Y.; Tanaka, N.; Ohta, S. Free Oxides and Short-Range Ordered Mineral Properties of Brown Forest Soils Developed from Different Parent Materials in the Submontane Zone of the Kanto and Chubu Districts, Japan. Soil Sci. Plant Nutr. 2007, 53, 621–633. [Google Scholar] [CrossRef]
- Guggenberger, G.; Kaiser, K. Dissolved Organic Matter in Soil: Challenging the Paradigm of Sorptive Preservation. Geoderma 2003, 113, 293–310. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Hill, W.R. Seasonal Patterns in Streamwater Nutrient and Dissolved Organic Carbon Concentrations: Separating Catchment Flow Path and in-Stream Effects. Water Resour. Res. 1997, 33, 1297–1306. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yoshitake, S. Ecological approach to the periphyton communities in small stream of mountainous forest. Kanagawa Prefecture. Bull. Kanagawa Prefect. Nat. Environ. Conserv. Cent. 2013, 10, 145–162. (In Japanese) [Google Scholar]
- Kaneko, S.; Miyama, T. The organic matters export from a forested small catchment in the watershed of Lake Biwa. In Proceedings of the 9th International Conference on the Conservation and Management of Lakes, Sligo, Ireland, 5–7 July 2001; pp. 38–40. [Google Scholar]
Sample Type | UV254 | SUVA254 | DON | Temp. | EC | H+ | Ca2+ | Mg2+ | K+ | NO3− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rv | 0.807 a | −0.255 | 0.251 | ND | 0.496 a | −0.052 | 0.650 a | 0.755 a | 0.766 a | 0.385 | 0.524 a | ND |
Rr | 0.758 a | −0.219 | 0.539 a | ND | 0.784 a | 0.501 a | 0.692 a | 0.729 a | 0.786 a | 0.786 a | 0.746 a | ND |
Rd | 0.823 a | −0.157 | 0.533 a | ND | 0.372 | −0.041 | 0.359 | 0.478 a | 0.854 a | 0.296 | 0.308 | ND |
TF | 0.947 a | −0.444 a | 0.750 a | ND | 0.727 a | −0.264 | 0.349 | 0.652 a | 0.899 a | −0.050 | 0.207 | ND |
SF | 0.960 a | −0.252 | 0.837 a | ND | 0.504 a | 0.429 a | 0.568 a | 0.495 a | 0.663 a | 0.423 a | 0.441 a | ND |
O leachate | 0.948 a | −0.191 | 0.769 a | ND | 0.746 a | −0.107 | 0.855 a | 0.863 a | 0.610 a | 0.714 a | 0.464 a | ND |
So10 | 0.757 a | −0.398 | 0.569 a | ND | −0.350 | −0.275 | −0.408 | −0.332 | 0.205 | −0.644 a | 0.144 | ND |
So30 | 0.859 a | −0.400 | 0.015 | ND | 0.079 | −0.287 | −0.026 | 0.580 | 0.719 a | −0.008 | 0.265 | ND |
So70 | 0.967 a | −0.007 | 0.417 | ND | 0.232 | 0.673 a | 0.570 a | 0.451 | 0.481 a | 0.075 | −0.239 | ND |
SPa | 0.641 a | −0.478 a | ND | 0.442 a | 0.115 | −0.099 | −0.223 | −0.109 | 0.350 | −0.085 | 0.359 | 0.448 a |
SPb | 0.833 a | −0.547 a | ND | 0.409 a | −0.675 a | −0.082 | 0.035 | −0.113 | 0.382 a | −0.696 a | −0.380 | −0.217 |
STa | 0.923 a | 0.070 | ND | 0.598 a | 0.050 | −0.461 a | 0.454 a | 0.381 a | 0.640 a | −0.789 a | −0.269 | 0.749 a |
STb | 0.697 a | −0.405 a | ND | 0.465 a | −0.178 | −0.564 a | 0.295 | 0.123 | 0.615 a | −0.558 a | 0.258 | 0.522 a |
STc | 0.788 a | −0.264 | ND | 0.520 a | −0.298 | −0.348 a | 0.246 | 0.244 | 0.551 a | −0.419 a | −0.561 a | 0.455 a |
STw | 0.880 a | −0.176 | 0.575 | 0.648 a | −0.097 | −0.403 a | 0.648 a | 0.517 a | 0.459 a | −0.584 a | −0.613 a | 0.671 a |
Year | 1995 | 1996 | 1997 | 1998 |
---|---|---|---|---|
Rainfall (mm) | 1529.7 | 1600.1 | 1582.6 | 1995 |
DOC in rain (mg L−1) | 1.08 | 0.98 | 1.52 | 1.65 |
DOC in TF (mg L−1) | 5.85 | 4.66 | 5.87 | 4.7 |
DOC in SF (mg L−1) | 25.66 | 35.9 | 27.19 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneko, S.; Furusawa, H.; Okamoto, T.; Hirano, Y. Dissolved Organic Matter (DOM) in a Warm-Temperate Forested Watershed—A Possibility of Ultraviolet Absorbance as an Indicator of DOM. Forests 2022, 13, 510. https://doi.org/10.3390/f13040510
Kaneko S, Furusawa H, Okamoto T, Hirano Y. Dissolved Organic Matter (DOM) in a Warm-Temperate Forested Watershed—A Possibility of Ultraviolet Absorbance as an Indicator of DOM. Forests. 2022; 13(4):510. https://doi.org/10.3390/f13040510
Chicago/Turabian StyleKaneko, Shinji, Hitomi Furusawa, Toru Okamoto, and Yasuhiro Hirano. 2022. "Dissolved Organic Matter (DOM) in a Warm-Temperate Forested Watershed—A Possibility of Ultraviolet Absorbance as an Indicator of DOM" Forests 13, no. 4: 510. https://doi.org/10.3390/f13040510
APA StyleKaneko, S., Furusawa, H., Okamoto, T., & Hirano, Y. (2022). Dissolved Organic Matter (DOM) in a Warm-Temperate Forested Watershed—A Possibility of Ultraviolet Absorbance as an Indicator of DOM. Forests, 13(4), 510. https://doi.org/10.3390/f13040510