Effects, Monitoring and Management of Forest Roads Using Remote Sensing and GIS in Angolan Miombo Woodlands
Abstract
:1. Introduction
- (i)
- detect the existing road network and
- (ii)
- propose alternative routes inside the management zones that can lead to the current forest plantation locations using multi-criteria decisions, hoping to overcome the shortcomings and limitations of the traditional road planning process. This will be the starting point for further research activities towards developing a spatial decision support system (SDSS) for planning road networks in Angola. To understand the need for this study, it is worth considering the following: basic rural infrastructure was severely damaged during the civil war in Angola, particularly in the most war-affected provinces in the Central and Northern plateaus. Bridges and roads were severely damaged and destroyed, and in many parts of the country, landmines are still an issue. However, some of the mines were removed to allow for roads and bridges repair in most areas. Despite security conditions throughout the country after the war ended in 2002, many rural roads are only passable during the dry season, resulting in inferior road locations.
2. Methods
2.1. Site Characteristics and Selection
- (a)
- highland forests (Afromontane forests);
- (b)
- miombo woodlands;
- (c)
- swamps;
- (d)
- dry grasslands.
2.2. Acquisition of Environmental Layers
2.3. Analytic Hierarchy Process (AHP)
- Row 1—Column 1: elevation
- Row 2—Column 2: the slope of the roads
- Row 3—Column 3: soil type
- Row 4—Column 4: flow accumulation
- Row 5—Column 5: geology
- Row 6—Column 6: aspect
2.4. Ranking and Classification
2.5. Extraction of the Final Map Based on AHP
3. Results
Proposal of Alternative Routes Based on AHP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vrtagić, S.; Softić, E.; Subotić, M.; Stević, Ž.; Dordevic, M.; Ponjavic, M. Ranking road sections based on mcdm model: New improved fuzzy swara (imf swara). Axioms 2021, 10, 92. [Google Scholar] [CrossRef]
- Sordyl, J. Application of the AHP Method to Analyze the Significance of the Factors Affecting Road Traffic Safety. Transp. Probl. 2015, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Chalmers University of Technology D06: European Best Practice for Roadside Design: Guidelines for Roadside Infrastructure on New and Existing Roads. U.S. Patent 2,997,323, 28 February 2006.
- Bujan, J.; Charavel, E.; Bates, O.K.; Gippet, J.M.W.; Darras, H.; Lebas, C.; Bertelsmeier, C. Increased acclimation ability accompanies a thermal niche shift of a recent invasion. J. Anim. Ecol. 2021, 90, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Silva, R.; Ponette, Q.; Verheyen, K.; Van Herzele, A.; Muys, B. Adaptation of forest management to climate change as perceived by forest owners and managers in Belgium. For. Ecosyst. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Toscani, P.; Sekot, W.; Holzleitner, F. Forest roads from the perspective of managerial accounting-empirical evidence from Austria. Forests 2020, 11, 378. [Google Scholar] [CrossRef] [Green Version]
- Gumus, S. An evaluation of stakeholder perception differences in forest road assessment factors using the Analytic Hierarchy Process (AHP). Forests 2017, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, S.; Hosseini, S.A. Assessment of drainage system standards of forest roads in Iran using GIS. Polish J. Environ. Stud. 2013, 22, 675–682. [Google Scholar]
- Fraefel, M.; Bont, L.G.; Fischer, C. Spatially explicit assessment of forest road suitability for timber extraction and hauling in Switzerland. Eur. J. For. Res. 2021, 140, 1195–1209. [Google Scholar] [CrossRef]
- Chomitz, K.M.; Gray, D.A. Roads, land use, and deforestation: A spatial model applied to Belize. World Bank Econ. Rev. 1996, 10, 487–512. [Google Scholar] [CrossRef] [Green Version]
- Wiest, R.L. A Landowner’s Guide to Building Forest Access Roads; USDA: Washington, DC, USA, 1998.
- Kleinschroth, F.; Laporte, N.; Laurance, W.F.; Goetz, S.J.; Ghazoul, J. Road expansion and persistence in forests of the Congo Basin. Nat. Sustain. 2019, 2, 628–634. [Google Scholar] [CrossRef]
- Nachmany, Y.; Alemohammad, H. Detecting Roads from Satellite Imagery in the Developing World. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 83–89. [Google Scholar]
- Queiroz, G.L.; McDermid, G.J.; Rahman, M.M.; Linke, J. The forest line mapper: A semi-automated tool for mapping linear disturbances in forests. Remote Sens. 2020, 12, 176. [Google Scholar] [CrossRef]
- Lotfalian, M.; Riahifar, N.; Fallah, A.; Hodjati, S.M. Effects of roads on understory plant communities in a froadleaved forest in Hyrcanian zone. J. For. Sci. 2012, 58, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Samani, K.; Hosseiny, S.; Lotfalian, M.; Najafi, A. Planning road network in mountain forests using GIS and Analytic Hierarchical Process (AHP). Casp. J. Environ. Sci. 2010, 8, 151–162. [Google Scholar]
- Sadeghi-Niaraki, A.; Kim, K.; Varshosaz, M. Multi-criteria decision-based model for road network process. Int. J. Environ. Res. 2010, 4, 573–582. [Google Scholar] [CrossRef]
- Mosadeghi, R.; Warnken, J.; Tomlinson, R.; Mirfenderesk, H. Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Comput. Environ. Urban Syst. 2015, 49, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Chiteculo, V.; Abdollahnejad, A.; Panagiotidis, D.; Surový, P.; Sharma, R.P. Defining deforestation patterns using satellite images from 2000 and 2017: Assessment of forest management in Miombo forests-A case study of Huambo province in Angola. Sustainability 2018, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Reutebuch, S.R. ROUTES: A Computer Program for Preliminary Route Location; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1988; Volume 216, p. 18. [Google Scholar] [CrossRef] [Green Version]
- Fannin, R.J.; Lorbach, J. Guide to Forest Road Engineering in Road Engineering in Mountainous Terrain; FAO: Rome, Italy, 2007. [Google Scholar]
- Gruber, G.; Scholz, J. GIS Based Planning of Forest Road Networks. Available online: http://www.agit.at/s_c/papers/2005/5089.pdf (accessed on 19 November 2021).
- Akay, A.E.; Sessions, J. Applying the decision support system, TRACER, to forest road design. West. J. Appl. For. 2005, 20, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.W. Automating Contour-Based Route Projection for Preliminary Forest Road Designs Using GIS. Master’s Thesis, University of Washington, Seattle, WC, USA, 2005. [Google Scholar]
- Chiou, C.R.; Tsai, W.L.; Leung, Y.F. A GIS-dynamic segmentation approach to planning travel routes on forest trail networks in Central Taiwan. Landsc. Urban Plan. 2010, 97, 221–228. [Google Scholar] [CrossRef]
- Nino, K.; Mamo, Y.; Mengesha, G.; Kibret, K.S. GIS based ecotourism potential assessment in Munessa Shashemene Concession Forest and its surrounding area, Ethiopia. Appl. Geogr. 2017, 82, 48–58. [Google Scholar] [CrossRef]
- Çalişkan, E.; Bediroglu, S.; Yildirim, V. Determination forest road routes via gis-based spatial multi-criterion decision methods. Appl. Ecol. Environ. Res. 2019, 17, 759–779. [Google Scholar] [CrossRef]
- Marcelino, P.; de Lurdes Antunes, M.; Fortunato, E.; Gomes, M.C. Development of a multi criteria decision analysis model for pavement maintenance at the network level: Application of the MACBETH approach. Front. Built Environ. 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Tsigdinos, S.; Vlastos, T. Exploring ways to determine an alternative strategic road network in a metropolitan city: A multi-criteria analysis approach. Int. Assoc. Traffic Saf. Sci. Res. 2021, 45, 102–115. [Google Scholar] [CrossRef]
- Masoudi, M.; Centeri, C.; Jakab, G.; Nel, L.; Mojtahedi, M. GIS-Based Multi-Criteria and Multi-Objective Evaluation for Sustainable Land-Use Planning (Case Study: Qaleh Ganj County, Iran) “Landuse Planning Using MCE and Mola”. Int. J. Environ. Res. 2021, 15, 457–474. [Google Scholar] [CrossRef]
- Belton, V.; JStewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Huntely, B.J.; Russo, V.; Lages, F.; Ferrand, N. Biodiversity of Angola: Science and Conservation: A Modern Synthesis; Springer: Cham, Swiztherland, 2019; ISBN 9783030030834. [Google Scholar]
- Huntley, B.; Matos, E.M. Botanical diversity and its conservation in Angola. Bot. Divers. S. Afr. 1994, 1, 53–74. [Google Scholar]
- Romeiras, M.M.; Figueira, R.; Duarte, M.C.; Beja, P.; Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 2014, 9, e0103403. [Google Scholar] [CrossRef]
- Benmaamar, M.; Arroyo Arroyo, F.; Tisso Eduardo, N. Angola Road Sector Public Expenditure Review. World Bank 2020. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Rezaeiniya, N.; Zavadskas, E.K.; Turskis, Z. Forest roads locating based on AHP and COPRAS-G methods: An empirical study based on Iran. Ekon. Manag. 2011, 14, 6–21. [Google Scholar]
- Delgado-Matas, C. Growth models for six Eucalyptus species in Angola. South. For. J. For. Sci. 2015, 77, 141–152. [Google Scholar] [CrossRef]
- Rodríguez-Piñeros, S.; Martínez-Cortés, O.; Villarraga-Flórez, L.; Ruíz-Díaz, A. Timber market actors’ values on forest legislation: A case study from Colombia. For. Policy Econ. 2018, 88, 1–10. [Google Scholar] [CrossRef]
- USAID. Biodiversity and Tropical Forest Assessment for Angola; USAID: Washington, DC, USA, 2008.
- UICN. Bibilothegue Environmental Synopsis; Angola; IUCN: Gland, Switzerland; Cambridge, UK, 1993. [Google Scholar]
- Delgado-Matas, C.; Pukkala, T. Growth and yield of nine pine species in Angola. J. For. Res. 2012, 23, 197–204. [Google Scholar] [CrossRef]
- Haddon, I.G. The Sub-Kalahari Geology and Tectronic Evolution of the Kalahari Basin. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2005. [Google Scholar]
- Sertoli, P.E. As Características do Complexo de Troca e a Classificação dos Solos da Républica de Angola. Master’s Thesis, Universidade Tecnica de Lisboa, Lisboa, Portugal, 2009; pp. 1–105. [Google Scholar]
- Ricardo, R.P.; Raposo, J.A.; Madeira, M. Estudos dos Solos de Angola pelo ISA e pelo IICT. Contribuição para a Ciência do Solo Tropical. Available online: https://docplayer.com.br/62836247-Estudos-dos-solos-de-angola-pelo-isa-e-pelo-iict-contribuicao-para-a-ciencia-do-solo-tropical.html (accessed on 16 December 2021).
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Taherdoost, H.; Group, H. Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step Approach 1 Analytical Hierarchy Process 2 Steps to Conduct AHP. Int. J. Econ. Manag. Syst. 2017, 2, 244–246. [Google Scholar]
- Martin, J. Forest Road Construction and Maintenance. Available online: https://www.nrs.fs.fed.us/fmg/nfmg/docs/mn/roads.pdf (accessed on 15 December 2021).
- Begus, J.; Pertlik, E. Guide for Planning, Construction and Maintenance of Forest Roads; FAO: Budapest, Hungary, 2017; ISBN 9789251097106. [Google Scholar]
- Ryan, T.; Phillips, H.; Ramsay, J.; Dempsey, J. Forest Road Manual; COFORD: Dublin, The Netherlands, 2004; ISBN 1902696328. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Keller, G.; Sherar, J.; Zweede, J. Overview of Amazon Basin Forest Roads Manual. Transp. Res. Rec. J. Transp. Res. Board 2015, 2472, 56–63. [Google Scholar] [CrossRef]
- U.S. Department of Transportation; Federal Highway Administration. Low-Volume Roads Engineering; U.S Department of Transportation: Washington, DC, USA, 2015; p. 16.
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.K. Angola’s Infrastructure Ambitions through Booms and Busts Policy; Chatham House: Luanda, Angola, 2018; p. 40. [Google Scholar]
- Pushak, N.; Foster, V. Tanzania’ s Infrastructure: A Continental Perspective; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Biggs, A.J.W.; Mahony, K.M. Conserving Soil and Water for Society: Sharing Solutions Is Soil Science Relevant to Road Infrastructure? In Proceedings of the ISCO 2004-13th International Soil Conservation Organisation Conference-Brisbane, Toowoomba, Australia, 13 July 2004; pp. 1–7. [Google Scholar]
- Gucinski, H.; Furniss, M.J.; Ziemer, R.R.; Brookes, M.H. Forest Roads: A Synthesis of Scientific Information; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 2001; p. 120. [Google Scholar]
- Krč, J.; Beguš, J. Planning forest opening with forest roads. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2013, 34, 217–228. [Google Scholar]
- Duarte, A.; Santos, R.; Tjønneland, E.N. Angola’s Lobito Corridor: From reconstruction to development. Angola Br. 2014, 4, 1–4. [Google Scholar]
- Akgun, A.; Dag, S.; Bulut, F. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ. Geol. 2008, 54, 1127–1143. [Google Scholar] [CrossRef]
- El Jazouli, A.; Barakat, A.; Khellouk, R. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron. Dis. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Wahdan, A.; Effat, H.; Abdallah, N.; Elwan, K. Design an Optimum Highway Route using Remote Sensing Data and GIS-Based Least Cost Path Model, Case of Minya-Ras Ghareb and Minya-Wahat-Bawiti Highway Routes, Egypt. Technol. Sci. Am. Sci. Res. J. Eng. 2019, 56, 157–181. [Google Scholar]
- Effat, H.A.; Hassan, O.A. Designing and evaluation of three alternatives highway routes using the Analytical Hierarchy Process and the least-cost path analysis, application in Sinai Peninsula, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Barić, D.; Pilko, H.; Strujić, J. An analytic hierarchy process model to evaluate road section design. Transport 2016, 31, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Ghomi Motazeh, A.; Naghdi, R.; Mohammadi Sammani, K.; Taghvaye Salimi, E.; Baniasadi, R. Evaluation of AHP application for Hyrcanian forests through road construction potential map. For. Ideas 2013, 45, 69–78. [Google Scholar]
Rank | |||||
---|---|---|---|---|---|
Layers | 1 | 2 | 3 | 4 | 5 |
Elevation | >2000 | 2000 | 1800 | 1600 | 1400 |
Slope (%) | >15 | 15 | 10 | 5 | 3 |
Soil Type | Ferralsols Háplics | _ | Acrisols Háplics | Arenosols Ferralsols | Cambisols Ferralsols |
Flow Accumulation | x > 3 | 3 > x > 2 | - | 2 > x > 1 | 1 > x |
Geology | - | - | Volcanic Mesozoic | Precambrian Basement | Quaternary Unconsolidated Sedimentary |
Aspect | South-East, South | - | South-West | North-East, East, West | North, North-West |
Elevation | Road Slope | Soil Type | Flow Accumulation | Geology | Aspect | |
---|---|---|---|---|---|---|
Elevation | 1.00 | 0.14 | 0.14 | 0.14 | 0.20 | 0.33 |
Road Slope | 7.00 | 1.00 | 0.33 | 0.33 | 0.33 | 3.00 |
Soil Type | 7.00 | 3.00 | 1.00 | 3.00 | 1.00 | 3.00 |
Flow Accumulation | 7.00 | 3.00 | 0.33 | 1.00 | 3.00 | 5.00 |
Geology | 5.00 | 3.00 | 1.00 | 0.33 | 1.00 | 3.00 |
Aspect | 3.00 | 0.33 | 0.33 | 0.20 | 0.33 | 1.00 |
Plantation Code | MZ * | Road Code | Length of Roads (km) | CSDR * (km) | City Point | Minimum Road Slope | Maximum Road Slope | Average Road Slope |
---|---|---|---|---|---|---|---|---|
1 | E | 2 | 87.75 | 25.50 | α | 0.023 | 2.090 | 0.824 |
2 | A | 3 | 78.47 | 8.21 | β | 0.041 | 6.971 | 2.323 |
3 | A | 3 & 8 | 70.05 | 28.94 | β | 0.041 | 10.604 | 3.349 |
4 | A | 1 & 6 | 140.03 | 99.07 | α | 0.035 | 4.973 | 0.907 |
5 | A | 5 | 52.45 | 25.60 | β | 0.238 | 6.005 | 2.021 |
6 | C | 6 & 9 | 42.13 | 14.44 | α | 0.068 | 2.652 | 1.430 |
7 | A | 3 & 8 | 70.05 | 19.19 | β | 0.041 | 10.604 | 3.349 |
8 | E | 4 | 60.44 | 57.30 | β | 0.003 | 1.885 | 0.611 |
Layers | Criteria Weights | Weighted Sum Value | Ratio | Λmax |
---|---|---|---|---|
Elevation | 0.0295 | 0.19 | 6.53 | 6.59 |
Slope (%) | 0.1256 | 0.79 | 6.30 | |
Soil Type | 0.3005 | 2.12 | 7.04 | |
Flow Accumulation | 0.2771 | 1.90 | 6.84 | |
Geology | 0.2006 | 1.32 | 6.57 | |
Aspect | 0.0666 | 0.42 | 6.29 |
Rank | Area | Area (%) | Score |
---|---|---|---|
1 | 40.76 | 0.12 | 27.71–300 |
2 | 1041.33 | 3.10 | 300–400 |
3 | 12,520.34 | 37.27 | 400–500 |
4 | 19,730.19 | 58.73 | 500–600 |
5 | 263.50 | 0.78 | 600–632.70 |
Sum | 33,596.12 | 100 |
Rank | Area | Area (%) | Score |
---|---|---|---|
1 | 0.73 | 0.00 | 175.62 |
2 | 0.28 | 0.00 | 261.09 |
3 | 76.22 | 0.23 | 312.90 |
4 | 216.40 | 0.64 | 344.45 |
5 | 324.90 | 0.97 | 369.88 |
6 | 319.26 | 0.95 | 390.62 |
7 | 280.23 | 0.83 | 407.98 |
8 | 330.96 | 0.99 | 422.27 |
9 | 502.58 | 1.50 | 435.44 |
10 | 888.39 | 2.64 | 447.71 |
11 | 1166.58 | 3.47 | 459.82 |
12 | 2285.73 | 6.80 | 471.89 |
13 | 1894.89 | 5.64 | 484.10 |
14 | 4023.09 | 11.97 | 496.46 |
15 | 4098.35 | 12.20 | 509.83 |
16 | 5343.20 | 15.90 | 524.72 |
17 | 4895.48 | 14.57 | 540.67 |
18 | 3671.97 | 10.93 | 559.83 |
19 | 2574.28 | 7.66 | 584.93 |
20 | 702.58 | 2.09 | 632.70 |
Sum | 33,596.1 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiteculo, V.; Abdollahnejad, A.; Panagiotidis, D.; Surový, P. Effects, Monitoring and Management of Forest Roads Using Remote Sensing and GIS in Angolan Miombo Woodlands. Forests 2022, 13, 524. https://doi.org/10.3390/f13040524
Chiteculo V, Abdollahnejad A, Panagiotidis D, Surový P. Effects, Monitoring and Management of Forest Roads Using Remote Sensing and GIS in Angolan Miombo Woodlands. Forests. 2022; 13(4):524. https://doi.org/10.3390/f13040524
Chicago/Turabian StyleChiteculo, Vasco, Azadeh Abdollahnejad, Dimitrios Panagiotidis, and Peter Surový. 2022. "Effects, Monitoring and Management of Forest Roads Using Remote Sensing and GIS in Angolan Miombo Woodlands" Forests 13, no. 4: 524. https://doi.org/10.3390/f13040524
APA StyleChiteculo, V., Abdollahnejad, A., Panagiotidis, D., & Surový, P. (2022). Effects, Monitoring and Management of Forest Roads Using Remote Sensing and GIS in Angolan Miombo Woodlands. Forests, 13(4), 524. https://doi.org/10.3390/f13040524